已知點(diǎn),點(diǎn)為直線上的一個(gè)動(dòng)點(diǎn).
(Ⅰ)求證:恒為銳角;
(Ⅱ)若四邊形為菱形,求的值.
(Ⅰ)證明見(jiàn)解析;(Ⅱ)2.
解析試題分析:(Ⅰ)已知一個(gè)角的兩邊的向量,可以求出這個(gè)角的大小,由題,可以求出向量PA,PB,由向量?jī)?nèi)積公式可求得角的范圍;(Ⅱ)菱形的對(duì)邊平行且四邊相等,向量相等,橫縱坐標(biāo)相等,由題,向量AP=BP,可以求得x=1,由向量PQ=BA,可以求得Q點(diǎn)坐標(biāo),即可求出向量的內(nèi)積.
試題解析:(Ⅰ)∵點(diǎn)在直線上,
∴點(diǎn),
∴,
∴ ,
∴,
若三點(diǎn)在一條直線上,則,
得到,方程無(wú)解,
∴,
∴恒為銳角.
(Ⅱ)∵四邊形為菱形,
∴,即
化簡(jiǎn)得到,
∴,
∴ ,
設(shè),∵,
∴,
∴,
∴.
考點(diǎn):1.用向量的內(nèi)積求角;2.菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
已知a,b是平面內(nèi)的兩個(gè)單位向量,設(shè)向量c=b,且|c|1,a(b-c)=0,則實(shí)數(shù)的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,給定,點(diǎn)為的中點(diǎn),點(diǎn)滿足,點(diǎn)滿足.
(1)求與的值;
(2)若三點(diǎn)坐標(biāo)分別為,求點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知P(x,y),A(-1,0),向量與=(1,1)共線。
(1)求y關(guān)于x的函數(shù)解析式;
(2)是否在直線y=2x和直線y=3x上分別存在一點(diǎn)B、C,使得滿足∠BPC為銳角時(shí)x取值集合為{x| x<-或x>}?若存在,求出這樣的B、C的坐標(biāo);若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知,
(1)求和的夾角;
(2)當(dāng)取何值時(shí),與共線?
(3)當(dāng)取何值時(shí),與垂直?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com