3.極坐標(biāo)ρ2cosθ-ρ=0表示的圖形是原點(diǎn)和直線x=1.

分析 以極點(diǎn)為坐標(biāo)原點(diǎn),極軸所在直線為x軸建立直角坐標(biāo)系.極坐標(biāo)ρ2cosθ-ρ=0化為:ρ=0,或x=1.即可得出結(jié)論.

解答 解:以極點(diǎn)為坐標(biāo)原點(diǎn),極軸所在直線為x軸建立直角坐標(biāo)系.
極坐標(biāo)ρ2cosθ-ρ=0化為:ρ=0,或ρcosθ=1,即x=1.
∴極坐標(biāo)ρ2cosθ-ρ=0表示的圖形是原點(diǎn)和直線x=1.
故答案為:原點(diǎn)和直線x=1.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、直線的方程,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若Sn=n2an(n≥2且n∈N*),a1=1,則an=$\frac{2}{n(n+1)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4sin(θ-$\frac{π}{6}$)
(Ⅰ)求圓C的直角坐標(biāo)方程;
(Ⅱ)O為極點(diǎn),A,B為圓C上的兩點(diǎn),且∠AOB=$\frac{π}{3}$,求|OA|+|OB|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.極坐標(biāo)系中,已知兩點(diǎn)A(2,$\frac{π}{2}$),B(4,$\frac{π}{6}$),求這兩點(diǎn)間的距離|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖:已知平面ABCD⊥平面BCE,平面ABE⊥平面BCE,AB∥CD,AB=BC=4,CD=2,△BEC為等邊三角形,P是線段CD上的動(dòng)點(diǎn).
(1)求證:平面ABE⊥平面ADE;
(2)求直線AB與平面APE所成角的最大值;
(3)是否存在點(diǎn)P,使得AP⊥BD?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知正三棱錐P-ABC的外接球的半徑為2,且球心在點(diǎn)A,B,C所確定的平面上,則該正三棱錐的表面積是(  )
A.3$\sqrt{2}$+3B.3($\sqrt{15}$+$\sqrt{3}$)C.3$\sqrt{15}$+3$\sqrt{2}$D.3($\sqrt{2}$+$\sqrt{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=loga$\frac{1+x}{mx-2m+1}$(a>0,a≠1)的圖象關(guān)于原點(diǎn)成中心對(duì)稱,其定義域?yàn)閰^(qū)間D.
(1)求實(shí)數(shù)m的值及函數(shù)的定義域D;
(2)若關(guān)于x的不等式f(x)>loga$\frac{(x-1)(7-x)}$對(duì)于?x∈[2,6]恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.三棱錐S-ABC的頂點(diǎn)S在平面ABC內(nèi)的射影為P,給出下列條件,一定可以判斷P為三角形ABC的垂心的有( 。﹤(gè)
①SA=SB=SC
②SA,SB,SC兩兩垂直 
③∠ABC=90°,SC⊥AB
④SC⊥AB,SA⊥BC.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為1的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$,設(shè)E、F分別為PC、BD的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)求二面角B-PD-C的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案