某批產(chǎn)品成箱包裝,每箱5件,一用戶在購進(jìn)該批產(chǎn)品前先隨機(jī)取出3箱,再從每箱中任意抽取2件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率;
(II)用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及ξ的數(shù)學(xué)期望.
【答案】分析:(1)抽到2件以上二等品包括2件二等品,4件一等品與3件二等品3件一等品,分別求概率,即可得到結(jié)論;
(II)由取出的第一、二、三箱中分別有0件、1件、2件二等品,可知變量ξ的取值,結(jié)合變量對應(yīng)的事件做出這四個事件發(fā)生的概率,寫出分布列和期望.
解答:解:(1)抽到2件二等品,4件一等品的概率為P1=+=
抽到3件二等品3件一等品的概率為=
抽到2件以上二等品的概率為P=+=
∴這批產(chǎn)品被用戶拒絕的概率為;
(II)由題意知抽檢的6件產(chǎn)品中二等品的件數(shù)ξ=0,1,2,3
P(ξ=0)==,P(ξ=1)==
P(ξ=2)=+=,P(ξ=3)==
∴ξ的分布列為
∴ξ的數(shù)學(xué)期望E(ξ)=0×+1×+2×+3×=1.2
點(diǎn)評:本題考查概率的計算,考查分布列的求法以及利用分布列求期望,解題的關(guān)鍵是確定變量的取值,計算其概率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某批產(chǎn)品成箱包裝,每箱5件,一用戶在購進(jìn)該批產(chǎn)品前先取出3箱,再從每箱中任意出取2件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及ξ的數(shù)學(xué)期望;
(2)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某批產(chǎn)品成箱包裝,每箱5件.一用戶在購進(jìn)該批產(chǎn)品前先取出3箱,再從每箱中任意抽取2件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù).
(Ⅰ)求在抽檢的6件產(chǎn)品中恰有一件二等品的概率;
(Ⅱ)求ξ的分布列和數(shù)學(xué)期望值;
(Ⅲ)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某批產(chǎn)品成箱包裝,每箱5件,一用戶在購進(jìn)該批產(chǎn)品前先取出3箱,再從每箱中任意出取2件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(I)求取6件產(chǎn)品中有1件產(chǎn)品是二等品的概率.
(II)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•瀘州模擬)某批產(chǎn)品成箱包裝,每箱5件,一用戶在購進(jìn)該批產(chǎn)品前先隨機(jī)取出3箱,再從每箱中任意抽取2件產(chǎn)品進(jìn)行檢驗(yàn).設(shè)取出的第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)若抽檢的6件產(chǎn)品中有2件或2件以上二等品,用戶就拒絕購買這批產(chǎn)品,求這批產(chǎn)品被用戶拒絕的概率;
(II)用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•揭陽二模)某批產(chǎn)品成箱包裝,每箱5件.一用戶在購進(jìn)該批產(chǎn)品前先取出3箱,設(shè)取出的3箱中,第一、二、三箱中分別有0件、1件、2件二等品,其余為一等品.
(1)在取出的3箱中,若該用戶從第三箱中有放回的抽取3次(每次一件),求恰有兩次抽到二等品的概率;
(2)在取出的3箱中,若該用戶再從每箱中任意抽取2件產(chǎn)品進(jìn)行檢驗(yàn),用ξ表示抽檢的6件產(chǎn)品中二等品的件數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案