【題目】已知函數(shù)f(x)=|x﹣a|+m|x+a|.
(1)當(dāng)m=a=﹣1時,求不等式f(x)≥x的解集;
(2)不等式f(x)≥2(0<m<1)恒成立時,實(shí)數(shù)a的取值范圍是{a|a≤﹣3或a≥3},求實(shí)數(shù)m的集合.
【答案】
(1)解:m=a=﹣1時,|x+1|﹣|x﹣1|≥x,
x<﹣1時,﹣(x+1)+(x﹣1)≥x,解得:x≤﹣2,
﹣1≤x≤1時,(x+1)+(x﹣1)≥x,解得:0≤x<1,
x≥1時,(x+1)﹣(x﹣1)≥x,解得:1≤x≤2,
綜上,不等式的解集是{x|x≤﹣2或0≤x≤2};
(2)解:f(x)=|x﹣a|+m|x+a|=m(|x﹣a|+|x+a|)+(1﹣m)|x﹣a|≥2m|a|+(1﹣m)|x﹣a|≥2m|a|≥2,
解得:a≤﹣ 或a≥ ,
∵數(shù)a的取值范圍是{a|a≤﹣3或a≥3},
故 =3,解得:m= ,
∴實(shí)數(shù)m的集合是{m|m= }
【解析】(1)將m=a=﹣1代入(x),通過討論x的范圍求出不等式的解集即可;(2)根據(jù)絕對值的性質(zhì)得到2m|a|≥2,解出a,得到關(guān)于m的方程,解出即可.
【考點(diǎn)精析】關(guān)于本題考查的絕對值不等式的解法,需要了解含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關(guān)鍵是去掉絕對值的符號才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C1的極坐標(biāo)方程為ρ=2sinθ,正方形ABCD的頂點(diǎn)都在C1上,且依次按逆時針方向排列,點(diǎn)A的極坐標(biāo)為( , ).
(1)求點(diǎn)C的直角坐標(biāo);
(2)若點(diǎn)P在曲線C2:x2+y2=4上運(yùn)動,求|PB|2+|PC|2的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正四棱錐P﹣ABCD中,底面ABCD的邊長為4,PD=4,E為PA的中點(diǎn),
(1)求證:平面EBD⊥平面PAC;
(2)求直線BE與平面PBD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲罐中有個紅球,個白球和個黑球,乙罐中有個紅球,個白球和個黑球。先從甲罐中隨機(jī)取出一球放入乙罐,分別以和表示由甲罐取出的球是紅球,白球和黑球的事件;再從乙罐中隨機(jī)取出一球,以表示由乙罐取出的球是紅球的事件,則下列結(jié)論中正確的是________(寫出所有正確結(jié)論的編號)。
①; ② 事件與事件相互獨(dú)立;③
④是兩兩互斥的事件;
⑤的值不能確定,因?yàn)樗c中哪一個發(fā)生有關(guān)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=x3-6x2+9x-abc,a<b<c,且f(a)=f(b)=f(c)=0.現(xiàn)給出如下結(jié)論:
①f(0)f(1)>0; ②f(0)f(1)<0;
③f(0)f(3)>0; ④f(0)f(3)<0.
其中正確結(jié)論的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax2+bx+c(a≠0),滿足f(0)=2,f(x+1)﹣f(x)=2x﹣1
(1)求函數(shù)f(x)的解析式;
(2)當(dāng)x∈[﹣1,2]時,求函數(shù)的最大值和最小值.
(3)若函數(shù)g(x)=f(x)﹣mx的兩個零點(diǎn)分別在區(qū)間(﹣1,2)和(2,4)內(nèi),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個水輪的半徑為4米,水輪圓心距離水面2米,已知水輪每分鐘逆時針轉(zhuǎn)動4圈,如果當(dāng)水輪上點(diǎn)從水中浮現(xiàn)(圖中點(diǎn))開始計算時間.
(1)將點(diǎn)距離水面的高度(米)表示為時間(秒)的函數(shù);
(2)在水輪旋轉(zhuǎn)一圈內(nèi),有多長時間點(diǎn)離開水面?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐 (圖1)的三視圖如圖2所示,為正三角形,垂直底面,俯視圖是直角梯形.
圖1 圖2
(1)求正視圖的面積;
(2)求四棱錐的體積;
(3)求證:平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.曲線C的參數(shù)方程為 (為參數(shù),且0≤<2π),曲線l的極坐標(biāo)方程為ρ= (k是常數(shù),且k∈R).
(1)求曲線C的普通方程和曲線l直角坐標(biāo)方程;
(2)若曲線l被曲線C截的弦是以( ,1)為中點(diǎn),求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com