若直線mx-ny+2=0(m>0,n>0)和函數(shù)f(x)=ax+1+1(a>0且a≠1)的圖象恒過同一個定點(diǎn),則
2
m
+
1
n
的最小值為( 。
A.10B.8C.4D.2
∵f(x)=ax+1+1過定點(diǎn)(-1,2),又點(diǎn)在直線上,∴m+2n=2,
2
m
+
1
n
=
1
2
×(
2
m
+
1
n
)(m+2n)=
1
2
(4+
4n
m
+
m
n
)≥2+
4
=4
(當(dāng)m=2n=1時取等),
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若直線mx+ny=4和圓x2+y2=4沒有公共點(diǎn),則過點(diǎn)(m,n)的直線與橢圓
x2
9
+
y2
4
=1
的公共點(diǎn)個數(shù)為( 。
A、至多一個B、0個
C、1個D、2個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線mx-ny+2=0(m>0,n>0)和函數(shù)f(x)=ax+1+1(a>0且a≠1)的圖象恒過同一個定點(diǎn),則
2
m
+
1
n
的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=1+logax(a>0,a≠1)的圖象恒過定點(diǎn)A,若點(diǎn)A在直線mx+ny-2=0上,其中mn>0,則
1
m
+
1
n
的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省黃岡中學(xué)高二(下)期末數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

若直線mx-ny+2=0(m>0,n>0)和函數(shù)f(x)=ax+1+1(a>0且a≠1)的圖象恒過同一個定點(diǎn),則的最小值為( )
A.10
B.8
C.4
D.2

查看答案和解析>>

同步練習(xí)冊答案