一個(gè)不透明圓錐體的正視圖和側(cè)視圖(左視圖)為兩全等的正三角形.若將它倒立放在桌面上,則該圓錐體在桌面上從垂直位置倒放到水平位置的過程中(含起始位置和最終位置),其在水平桌面上正投影不可能是( 。
A、
圓形區(qū)域
B、
等腰三角形兩腰與半橢圓圍成的區(qū)域
C、
等腰三角形兩腰與半圓圍成的區(qū)域
D、
橢圓形區(qū)域
考點(diǎn):平行投影及平行投影作圖法
專題:空間位置關(guān)系與距離
分析:由圓錐體不會(huì)出現(xiàn)三邊投影等長(zhǎng)的情況,知正確選項(xiàng)為C.
解答:解:觀察四個(gè)選項(xiàng),知該圓錐體在桌面上從垂直位置倒放到
水平位置的過程中(含起始位置和最終位置),
它在水平桌面上正投影不可能是C,
因?yàn)閳A錐要出現(xiàn)投影是半圓的話,
投影圓直徑和實(shí)物直徑是一樣長(zhǎng)的.
當(dāng)它向水平傾斜的時(shí)候,如果看成是一個(gè)正三角形的話,
只有在三角形完全水平的時(shí)候才會(huì)出現(xiàn)三邊投影一樣長(zhǎng),
而圓錐是不可能達(dá)到這種情況的.
也就是說圓錐體不會(huì)出現(xiàn)三邊投影等長(zhǎng)的情況.
故選:C.
點(diǎn)評(píng):本題考查圓錐體在桌面上正投影形狀的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意平行投影知識(shí)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x),若f(x0)=x0,則稱x0為函數(shù)f(x)的“不動(dòng)點(diǎn)”;若f(f(x0))=x0,則稱x0為函數(shù)f(x)的“穩(wěn)定點(diǎn)”.如果函數(shù)f(x)=x2+a(a∈R)的“穩(wěn)定點(diǎn)”恰是它的“不動(dòng)點(diǎn)”,那么實(shí)數(shù)a的取值范圍是( 。
A、(-∞,
1
4
]
B、(-
3
4
,+∞)
C、(-
3
4
1
4
]
D、[-
3
4
1
4
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點(diǎn)A(-1,-5)、B(3,-2),直線l的傾斜角是直線AB傾斜角的兩倍,則直線l的斜率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=g(x)是定義在[m,n]上的增函數(shù),且0<n<-m,設(shè)函數(shù)f(x)=[g(x)]2-[g(-x)]2,且f(x)不恒等于0,則對(duì)于函數(shù)y=f(x)以下判斷正確的是( 。
A、定義域是(m,n)且在定義域內(nèi)單調(diào)遞增
B、定義域是(-n,n)且在定義域內(nèi)單調(diào)遞增
C、定義域是(-n,n)且圖象關(guān)于原點(diǎn)對(duì)稱
D、定義域是(-n,n)且最小值為0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)的圖象中,其中不能用二分法求其零點(diǎn)的有( 。﹤(gè)
A、0B、1
C、2D、3x k

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|y=log2(2x+3)},B={y|y=
9-x2
},則A∩B為( 。
A、(0,
3
2
B、(0,3]
C、[-
3
2
,∞)
D、[0,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=tan(x-
π
3
)
的圖象,則圖象的對(duì)稱中心坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

看下面的演繹推理過程:
大前提:棱柱的體積公式為:底面積×高.
小前提:如圖直三棱柱ABC-DEF.H是棱AB的中點(diǎn),ABED為底面,CH⊥平面ABED,即CH為高,
結(jié)論:直三棱柱ABC-DEF的體積為 SABED•CH.這個(gè)推理過程( 。
A、正確
B、錯(cuò)誤,大前提出錯(cuò)
C、錯(cuò)誤,小前提出錯(cuò)
D、錯(cuò)誤,結(jié)論出錯(cuò)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某圓臺(tái)如圖所示放置,則該圓臺(tái)的俯視圖是(  )
A、
B、
C、
D、

查看答案和解析>>

同步練習(xí)冊(cè)答案