【題目】如圖,從一個(gè)面積為的半圓形鐵皮上截取兩個(gè)高度均為的矩形,并將截得的兩塊矩形鐵皮分別以,為母線卷成兩個(gè)高均為的圓柱(無(wú)底面,連接部分材料損失忽略不計(jì)).記這兩個(gè)圓柱的體積之和為

(1)將表示成的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍;

(2)求兩個(gè)圓柱體積之和的最大值.

【答案】(1).(2)

【解析】

(1)設(shè)半圓形鐵皮的半徑為r,自下而上兩個(gè)矩形卷成的圓柱的底面半徑分別為r1,r2,寫(xiě)出y關(guān)于x的函數(shù)關(guān)系,并寫(xiě)出x的取值范圍;

(2)利用導(dǎo)數(shù)判斷Vx)的單調(diào)性,得出Vx)的最大值.

(1)設(shè)半圓形鐵皮的半徑為,自下而上兩個(gè)矩形卷成的圓柱的底面半徑分別為

因?yàn)榘雸A形鐵皮的面積為,所以,即

因?yàn)?/span>,所以,

同理,即

所以卷成的兩個(gè)圓柱的體積之和

因?yàn)?/span>,所以的取值范圍是

(2)由,得,

,因?yàn)?/span>,故

當(dāng)時(shí),;當(dāng)時(shí),

所以上為增函數(shù),在上為減函數(shù),

所以當(dāng)時(shí),取得極大值,也是最大值.

因此的最大值為

答:兩個(gè)圓柱體積之和的最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】質(zhì)檢部門(mén)對(duì)某工廠甲、乙兩個(gè)車(chē)間生產(chǎn)的12個(gè)零件質(zhì)量進(jìn)行檢測(cè).甲、乙兩個(gè)車(chē)間的零件質(zhì)量(單位:克)分布的莖葉圖如圖所示.零件質(zhì)量不超過(guò)20克的為合格.

(1)從甲、乙兩車(chē)間分別隨機(jī)抽取2個(gè)零件,求甲車(chē)間至少一個(gè)零件合格且乙車(chē)間至少一個(gè)零件合格的概率;

(2)質(zhì)檢部門(mén)從甲車(chē)間8個(gè)零件中隨機(jī)抽取4件進(jìn)行檢測(cè),若至少2件合格,檢測(cè)即可通過(guò),若至少3 件合格,檢測(cè)即為良好,求甲車(chē)間在這次檢測(cè)通過(guò)的條件下,獲得檢測(cè)良好的概率;

(3)若從甲、乙兩車(chē)間12個(gè)零件中隨機(jī)抽取2個(gè)零件,用表示乙車(chē)間的零件個(gè)數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,其中, 為自然對(duì)數(shù)的底數(shù).

(1)設(shè)是函數(shù)的導(dǎo)函數(shù),討論的單調(diào)性;

(2)若關(guān)于的方程上有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓,拋物線的焦點(diǎn)均在軸上, 的中心和的頂點(diǎn)均為原點(diǎn),從, 上分別取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:

3

-2

4

0

-4

(1)求的標(biāo)準(zhǔn)方程;

(2)若直線與橢圓交于不同的兩點(diǎn),且線段的垂直平分線過(guò)定點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過(guò)拋物線與坐標(biāo)軸的三個(gè)交點(diǎn).

(1)求圓的方程;

(2)經(jīng)過(guò)點(diǎn)的直線與圓相交于兩點(diǎn),若圓兩點(diǎn)處的切線互相垂直,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2018·江西聯(lián)考]交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了80輛車(chē)齡已滿三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類型

數(shù)量

20

10

10

20

15

5

以這80輛該品牌車(chē)的投保類型的頻率代替一輛車(chē)投保類型的概率,完成下列問(wèn)題:

(1)按照我國(guó)《機(jī)動(dòng)車(chē)交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車(chē)交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,.某同學(xué)家里有一輛該品牌車(chē)且車(chē)齡剛滿三年,記X為該品牌車(chē)在第四年續(xù)保時(shí)的費(fèi)用,求X的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)

(2)某二手車(chē)銷(xiāo)售商專門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē).假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損4000元,一輛非事故車(chē)盈利8000元:

①若該銷(xiāo)售商購(gòu)進(jìn)三輛(車(chē)齡已滿三年)該品牌二手車(chē),求這三輛車(chē)中至多有一輛事故車(chē)的概率;

②若該銷(xiāo)售商一次購(gòu)進(jìn)100輛(車(chē)齡已滿三年)該品牌二手車(chē),求他獲得利潤(rùn)的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,函數(shù)Fx=min{2|x1|,x22ax+4a2}

其中min{p,q}=

)求使得等式Fx=x22ax+4a2成立的x的取值范圍;

)()求Fx)的最小值ma);

)求Fx)在區(qū)間[0,6]上的最大值Ma.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的圖像過(guò)點(diǎn),且在點(diǎn)處的切線方程為.

1)求的解析式;

2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象與x軸恰有兩個(gè)不同公共點(diǎn),則m =_______

查看答案和解析>>

同步練習(xí)冊(cè)答案