【題目】流行性感冒(簡稱流感)是流感病毒引起的急性呼吸道感染,是一種傳染性強(qiáng)、傳播速度快的疾。渲饕ㄟ^空氣中的飛沫、人與人之間的接觸或與被污染物品的接觸傳播.流感每年在世界各地均有傳播,在我國北方通常呈冬春季流行,南方有冬春季和夏季兩個流行高峰.兒童相對免疫力低,在幼兒園、學(xué)校等人員密集的地方更容易被傳染.某幼兒園將去年春期該園患流感小朋友按照年齡與人數(shù)統(tǒng)計(jì),得到如下數(shù)據(jù):
年齡() | |||||
患病人數(shù)() |
(1)求關(guān)于的線性回歸方程;
(2)計(jì)算變量、的相關(guān)系數(shù)(計(jì)算結(jié)果精確到),并回答是否可以認(rèn)為該幼兒園去年春期患流感人數(shù)與年齡負(fù)相關(guān)很強(qiáng)?(若,則、相關(guān)性很強(qiáng);若,則、相關(guān)性一般;若,則、相關(guān)性較弱.)
參考數(shù)據(jù):.
參考公式:,
相關(guān)系數(shù).
【答案】(1);(2)相關(guān)系數(shù)為,可以認(rèn)為該幼兒園去年春期患流感人數(shù)與年齡負(fù)相關(guān)很強(qiáng).
【解析】
(1)結(jié)合已知數(shù)據(jù)和參考公式求出、這兩個系數(shù),即可得回歸方程;
(2)根據(jù)相關(guān)系數(shù)的公式求出的值,再結(jié)合的正負(fù)性與的大小進(jìn)行判斷即可.
(1)由題意得,,,
,
,
故關(guān)于的線性回歸方程為;
(2),
,說明、負(fù)相關(guān),又,說明、相關(guān)性很強(qiáng).
因此,可以認(rèn)為該幼兒園去年春期患流感人數(shù)與年齡負(fù)相關(guān)很強(qiáng).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)既有一個極小值又有一個極大值,求的取值范圍;
(3)若存在,使得當(dāng)時, 的值域是,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)市場調(diào)查,某種商品一年內(nèi)每件出廠價(jià)在6千元的基礎(chǔ)上,按月呈的模型波動(x為月份),已知3月份達(dá)到最高價(jià)8千元,7月份價(jià)格最低為4千元,該商品每件的售價(jià)為(x為月份),且滿足.
(1)分別寫出該商品每件的出廠價(jià)函數(shù)和售價(jià)函數(shù)的解析式;
(2)問幾月份的銷售盈利最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為打贏脫貧攻堅(jiān)戰(zhàn),解決脫貧問題,政府重點(diǎn)扶持扶貧工廠.當(dāng)?shù)貙δ撤鲐毠S進(jìn)行設(shè)備改造,為分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前后生產(chǎn)的大量產(chǎn)品中各抽取100件產(chǎn)品作為樣本,檢測質(zhì)量指標(biāo)值.該產(chǎn)品為次品、合格品、優(yōu)等品所對應(yīng)的指標(biāo)值范圍分別為,,.設(shè)備改造前的樣本的頻率分布直方圖如圖所示,設(shè)備改造后的樣本的頻數(shù)分布表如下所示.
質(zhì)量指標(biāo)值 | |||||
頻數(shù) | 1 | 4 | 47 | 38 | 10 |
(Ⅰ)根據(jù)以上數(shù)據(jù),完成以下列聯(lián)表,并判斷是否有的把握認(rèn)為設(shè)備改造與產(chǎn)品為次品有關(guān)?
次品 | 非次品 | 合計(jì) | |
改造前 | |||
改造后 | |||
合計(jì) |
(Ⅱ)若工人的月工資是由基本工資1000元與效益工資兩部分組成.效益工資實(shí)施細(xì)則如下:每生產(chǎn)一件產(chǎn)品是合格品的獎50元,是優(yōu)等品的獎100元,是次品的扣20元.將頻率視為概率,估計(jì)設(shè)備改造后,一個月生產(chǎn)60件產(chǎn)品的工人月工資為多少元?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)討論的極值點(diǎn)的個數(shù);
(2)若有兩個極值點(diǎn)x1,x2(x1<x2),且求的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓,以為圓心的圓記為圓,已知圓上的點(diǎn)與圓上的點(diǎn)之間距離的最大值為21.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)求過點(diǎn)且與圓相切的直線的方程;
(3)已知直線與軸不垂直,且與圓,圓都相交,記直線被圓,圓截得的弦長分別為,.若,求證:直線過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】線段AB外有一點(diǎn)C,∠ABC=60°,AB=200 km,汽車以80 km/h的速度由A向B行駛,同時摩托車以50 km/h的速度由B向C行駛,則運(yùn)動開始________h后,兩車的距離最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】節(jié)約資源和保護(hù)環(huán)境是中國的基本國策.某化工企業(yè),積極響應(yīng)國家要求,探索改良工藝,使排放的廢氣中含有的污染物數(shù)量逐漸減少.已知改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良后所排放的廢氣中含有的污染物數(shù)量為.設(shè)改良工藝前所排放的廢氣中含有的污染物數(shù)量為,首次改良工藝后所排放的廢氣中含有的污染物數(shù)量為,則第次改良后所排放的廢氣中的污染物數(shù)量,可由函數(shù)模型給出,其中是指改良工藝的次數(shù).
(1)試求改良后所排放的廢氣中含有的污染物數(shù)量的函數(shù)模型;
(2)依據(jù)國家環(huán)保要求,企業(yè)所排放的廢氣中含有的污染物數(shù)量不能超過,試問至少進(jìn)行多少次改良工藝后才能使得該企業(yè)所排放的廢氣中含有的污染物數(shù)量達(dá)標(biāo).(參考數(shù)據(jù):取
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com