【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線(xiàn)的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為

(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程;

(2)已知點(diǎn)的直角坐標(biāo)為,直線(xiàn)與曲線(xiàn)相交于不同的兩點(diǎn),求的取值范圍.

【答案】(Ⅰ);(Ⅱ) .

【解析】(Ⅰ)由題意,根據(jù)極坐標(biāo)與直角坐標(biāo)互化的公式,代入曲線(xiàn)的極坐標(biāo)方程,再進(jìn)行整理即可;(Ⅱ)聯(lián)立直線(xiàn)的參數(shù)方程與曲線(xiàn)的直角坐標(biāo)方程,消去,利用直線(xiàn)參數(shù)的幾何意義,及根與系數(shù)的關(guān)系,再進(jìn)行化簡(jiǎn)整理,從而問(wèn)題即可得解.

試題解析:(Ⅰ) ;

(Ⅱ)因?yàn)辄c(diǎn)在橢圓的內(nèi)部,故恒有兩個(gè)交點(diǎn),即,將直線(xiàn)的參數(shù)方程與橢圓的直角

坐標(biāo)方程聯(lián)立,得,整理得

,則.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,圓C經(jīng)過(guò)A(0,1),B(3,4),C(6,1)三點(diǎn).
(1)求圓C的方程;
(2)若圓C與直線(xiàn)x﹣y+a=0交于A,B兩點(diǎn),且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四邊形ABCD中, =(3,2), =(x,y), =(﹣2,﹣3)
(1)若 ,試求x與y滿(mǎn)足的關(guān)系式;
(2)滿(mǎn)足(1)同時(shí)又有 ,求x,y的值及四邊形ABCD的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖四棱錐的底面為菱形,且 , .

(Ⅰ)求證:平面平面;

(Ⅱ)二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】圓過(guò)點(diǎn) .

求:(1)周長(zhǎng)最小的圓的方程;

2)圓心在直線(xiàn)上的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四面體中, 底面的重心, 為線(xiàn)段上一點(diǎn),且平面,則直線(xiàn)所成角的余弦值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)滿(mǎn)足f(x)+f(2﹣x)=2,當(dāng)x∈(0,1]時(shí),f(x)=x2 , 當(dāng)x∈(﹣1,0]時(shí), ,若定義在(﹣1,3)上的函數(shù)g(x)=f(x)﹣t(x+1)有三個(gè)不同的零點(diǎn),則實(shí)數(shù)t的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.

(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;

(2)計(jì)算甲班的樣本方差;

(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

2)是否存在實(shí)數(shù),使恒成立,若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案