16.兩列火車從同一站臺(tái)沿相反方向開去,走了相同的路程,設(shè)兩列火車的位移向量分別為$\overrightarrow{a}$和$\overrightarrow$,則下列說(shuō)法中錯(cuò)誤的是( 。
A.$\overrightarrow{a}$與$\overrightarrow$為平行向量B.$\overrightarrow{a}$與$\overrightarrow$為模相等的向量
C.$\overrightarrow{a}$與$\overrightarrow$為共線向量D.$\overrightarrow{a}$與$\overrightarrow$為相等的向量

分析 根據(jù)題意,根據(jù)向量的定義依次分析選項(xiàng),即可得答案.

解答 解:根據(jù)題意,依次分析選項(xiàng):
對(duì)于A、兩列火車從同一站臺(tái)沿相反方向開去,即$\overrightarrow{a}$和$\overrightarrow$為反向的共線向量,A正確;
對(duì)于B、兩列火車從走了相同的路程,即$\overrightarrow{a}$和$\overrightarrow$的模相等,B正確;
對(duì)于C、兩列火車從同一站臺(tái)沿相反方向開去,即$\overrightarrow{a}$和$\overrightarrow$為反向的共線向量,C正確;
對(duì)于D、$\overrightarrow{a}$和$\overrightarrow$為反向的共線向量,則$\overrightarrow{a}$和$\overrightarrow$不相等,D錯(cuò)誤;
故選:D.

點(diǎn)評(píng) 本題考查向量的概念,涉及向量平行、相等等概念,關(guān)鍵是理解向量的定義.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.已知△ABC的內(nèi)角A,B,C成等差數(shù)列,對(duì)應(yīng)邊a,b,c成等比數(shù)列,那么△ABC的形狀為等邊三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖是我國(guó)2009年至2015年生活垃圾無(wú)害化處理量(單位:億噸)的折線圖
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;
(Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2017年我國(guó)生活垃圾無(wú)害化處理量.
參考數(shù)據(jù):$\sum_{i=1}^{7}$yi=9.32,$\sum_{i=1}^{7}$tiyi=40.17,$\sqrt{{\sum_{i=1}^{7}{(y}_{i}-\overline{y})}^{2}}$=0.55,$\sqrt{7}$≈2.646.
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}{(t}_{i}-\overline{t}){(y}_{i}-\overline{y})}{\sqrt{{\sum_{i=1}^{n}{(t}_{i}-\overline{t})}^{2}{\sum_{i=1}^{n}{(y}_{i}-\overline{y})}^{2}}}$=$\frac{n{{\sum_{i=1}^{n}t}_{i}y}_{i}-{\sum_{i=1}^{n}t}_{i}•{\sum_{i=1}^{n}y}_{i}}{n\sqrt{{\sum_{i=1}^{n}{(t}_{i}-\overline{t})}^{2}{\sum_{i=1}^{n}{(y}_{i}-\overline{y})}^{2}}}$
回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}$t中斜率和截距的最小二乘估計(jì)公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{(t}_{i}-\overline{t}){(y}_{i}-\overline{y})}{{\sum_{i=1}^{n}{(t}_{i}-\overline{t})}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$t.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知a,b,c分別為△ABC的內(nèi)角A,B,C所對(duì)的邊,且3a2+3b2-c2=4ab,則△ABC( 。
A.可能為銳角三角形B.一定不是銳角三角形
C.一定為鈍角三角形D.不可能為鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知直線l1:x=-4和直線l2:3x+4y+18=0,P是拋物線y2=16x上的點(diǎn),P到l1、l2距離之和最小時(shí),P到直線l2的距離是( 。
A.1B.2C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在等差數(shù)列{an}中,若其前13項(xiàng)的和S13=52,則a7為( 。
A.4B.3C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.A、B分別是復(fù)數(shù)z1、z2在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn),O是原點(diǎn),若|z1+z2|=|z1-z2|,則三角形AOB一定是( 。
A.等腰三角形B.直角三角形C.等邊三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知圓C:(x-3)2+(y-t)2=t2(t≠0,t∈R),A(-3,0),B(3,2t),F(xiàn)(2,0).
(1)若過(guò)A傾斜角為60°的直線與圓C相切,求t的值;
(2)過(guò)F且傾斜角不為0的直線l與圓C相切,l與AB交于M,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.體積為$\frac{4π}{3}$的球與正三棱柱的所有面均相切,則該棱柱的體積為6$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案