17.已知圓M:x2+y2-2ay=0(a>0)截直線x+y=0所得線段的長(zhǎng)度是2$\sqrt{2}$,則圓M與圓N:(x-1)2+(y-1)2=1的位置關(guān)系是相交.

分析 根據(jù)直線與圓相交的弦長(zhǎng)公式,求出a的值,結(jié)合兩圓的位置關(guān)系進(jìn)行判斷即可.

解答 解:圓的標(biāo)準(zhǔn)方程為M:x2+(y-a)2=a2 (a>0),
則圓心為(0,a),半徑R=a,
圓心到直線x+y=0的距離d=$\frac{a}{\sqrt{2}}$,
∵圓M:x2+y2-2ay=0(a>0)截直線x+y=0所得線段的長(zhǎng)度是2$\sqrt{2}$,
∴2$\sqrt{{a}^{2}-\frac{{a}^{2}}{2}}$=2$\sqrt{2}$
即a2=4,a=2,
則圓心為M(0,2),半徑R=2,
圓N:(x-1)2+(y-1)2=1的圓心為N(1,1),半徑r=1,
則MN=$\sqrt{2}$,
∵R+r=3,R-r=1,
∴R-r<MN<R+r,
即兩個(gè)圓相交.
故答案為:相交.

點(diǎn)評(píng) 本題主要考查直線和圓相交的應(yīng)用,以及兩圓位置關(guān)系的判斷,根據(jù)相交弦長(zhǎng)公式求出a的值是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中,是偶函數(shù)且在區(qū)間(0,1)上為增函數(shù)的是( 。
A.f(x)=log2|x|B.y=3-xC.y=$\frac{1}{x}$D.y=-x2+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(2,-4).若$\overrightarrow{a}$與$\overrightarrow$( 。
A.垂直B.不垂直也不平行C.平行且同向D.平行且反向

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)y=f(x)的導(dǎo)函數(shù)有且僅有兩個(gè)零點(diǎn),其圖象如圖所示,則函數(shù)y=f(x)在x=-1處取得極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知{an}是等比數(shù)列,a2=2且公比q>0,-2,a1,a3成等差數(shù)列.
(Ⅰ)求q的值;
(Ⅱ)已知bn=anan+2-λnan+1(n=1,2,3,…),設(shè)Sn是數(shù)列{bn}的前n項(xiàng)和.若S1>S2,且Sk<Sk+1(k=2,3,4,…),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)-x2=g(x),x∈R,若函數(shù)f(x)為偶函數(shù),則g(x)的解析式可以為( 。
A.x3B.cosxC.1+xD.xex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若函數(shù)f(x)=k-$\frac{{{x^4}-3{x^2}}}{x}$有三個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍是(-2,0)∪(0,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列四個(gè)函數(shù)中,在其定義域上既是奇函數(shù)又是單調(diào)遞增函數(shù)的是( 。
A.y=x-1B.y=tanxC.y=x3D.$y=-\frac{2}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知函數(shù)f(x)是R上的奇函數(shù),且滿足f(x+2)=-f(x),當(dāng)x∈[0,1]時(shí),f(x)=x,則方程f(x)=$\frac{2x-8}{x+1}$在(0,+∞)解的個(gè)數(shù)是(  )
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案