5.在平面幾何中,有“若△ABC的周長(zhǎng)c,面積為S,則內(nèi)切圓半徑r=$\frac{2S}{c}$”,類比上述結(jié)論,在立體幾何中,有“若四面體ABCD的表面積為S,體積為V,則其內(nèi)切球的半徑r=( 。
A.$\frac{3V}{S}$B.$\frac{2V}{S}$C.$\frac{V}{2S}$D.$\frac{V}{3S}$

分析 根據(jù)平面與空間之間的類比推理,由點(diǎn)類比點(diǎn)或直線,由直線 類比 直線或平面,由內(nèi)切圓類比內(nèi)切球,由平面圖形面積類比立體圖形的體積,結(jié)合求三角形的面積的方法類比求四面體的體積即可.

解答 解:設(shè)四面體的內(nèi)切球的球心為O,
則球心O到四個(gè)面的距離都是R,
所以四面體的體積等于以O(shè)為頂點(diǎn),
分別以四個(gè)面為底面的4個(gè)三棱錐體積的和.
則四面體的體積為 V四面體A-BCD=$\frac{1}{3}$(S1+S2+S3+S4)R
∴R=$\frac{3V}{S}$.
故選:A.

點(diǎn)評(píng) 本題考查類比推理的應(yīng)用,類比推理是指依據(jù)兩類數(shù)學(xué)對(duì)象的相似性,將已知的一類數(shù)學(xué)對(duì)象的性質(zhì)類比遷移到另一類數(shù)學(xué)對(duì)象上去.一般步驟:①找出兩類事物之間的相似性或者一致性.②用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(或猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)y=|x-1|+1可表示為( 。
A.$y=\left\{{\begin{array}{l}{2-x,x<1}\\{x,x>1}\end{array}}\right.$B.$y=\left\{{\begin{array}{l}{2-x,x>1}\\{x,x≤1}\end{array}}\right.$C.$y=\left\{{\begin{array}{l}{x,x<1}\\{2-x,x≥1}\end{array}}\right.$D.$y=\left\{{\begin{array}{l}{2-x,x<1}\\{x,x≥1}\end{array}}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.若集合A={x|-2<x<4},B={x|x-m<0}.
(1)若m=3,全集U=A∪B,試求A∩(∁UB);
(2)若A∩B=A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.如果集合P={x|x>-1},那么( 。
A.0⊆PB.{0}∈PC.∅∈PD.{0}?P

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知F1,F(xiàn)2是橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的兩個(gè)焦點(diǎn),P為橢圓C上一點(diǎn),且∠F1PF2=$\frac{2π}{3}$,若△PF1F2的面積為$9\sqrt{3}$,則b=(  )
A.9B.3C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知隨機(jī)變量X的分布列為P(X=k)=$\frac{1}{{2}^{k}}$,k=1,2,…,則P(2<X≤4)等于$\frac{3}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.將a千克的白糖加水配制成b千克的糖水(b>a>0),則其濃度為$\frac{a}$,若再加入m千克的白糖(m>0),糖水更甜了.根據(jù)這一生活常識(shí),提煉一個(gè)常1見的不等式:$\frac{a}$<$\frac{a+m}{b+m}$(b>a>0,m>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.某中醫(yī)研制了一種治療咳嗽的湯劑,規(guī)格是0.25kg/瓶,服用劑量是每次一瓶,治療時(shí)需把湯劑放在熱水中加熱到t0C才能給病人服用,若把m1kg湯藥放入m2kg熱水中,待二者溫度相同時(shí)取出,則湯劑提高的溫度t1℃與熱水降低的溫度t2℃滿足關(guān)系式m1t1=0.8m2t2,某次治療時(shí),王護(hù)士把x瓶溫度為100C湯劑放入溫度為90°C、質(zhì)量為2.5kg的熱水中加熱,待二者溫度相同時(shí)取出,恰好適合病人服用.
(1)求x關(guān)于t的函數(shù)解析式;
(2)若t∈[30,40],問(wèn):王護(hù)士加熱的湯劑最多夠多少個(gè)病人服用?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.為了了解籃球愛好者小李投籃命中率與打籃球時(shí)間之間的關(guān)系,記錄了小李第i天打籃球的時(shí)間xi(單位:小時(shí))與當(dāng)天投籃命中率yi的數(shù)據(jù),其中i=1,2,3,4,5.算得:$\sum_{i=1}^{5}$xi=15,$\sum_{i=1}^{5}$yi=2.5,$\sum_{i=1}^{5}$xiyi=7.6,$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=5.5,.
(Ⅰ)求投籃命中率y對(duì)打籃球時(shí)間x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(Ⅱ)若小李明天準(zhǔn)備打球2.5小時(shí),預(yù)測(cè)他的投籃命中率.
附:線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$中$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案