分析 求出f′(x)=lnx+1,從而(0,$\frac{1}{e}$)上函數(shù)單調(diào)遞減,($\frac{1}{e}$,+∞)上函數(shù)單調(diào)遞增,由此得到①②③均不正確;構(gòu)造令g(x)=$\frac{f(x)}{x}$=lnx,則g′(x)=$\frac{1}{x}$,(0,+∞)上函數(shù)單調(diào)遞增,由此得到④正確.
解答 解:∵f(x)=xlnx,∴f′(x)=lnx+1,
∴(0,$\frac{1}{e}$)上函數(shù)單調(diào)遞減,($\frac{1}{e}$,+∞)上函數(shù)單調(diào)遞增,
∵x2>x1>0,
∴在①中,(x1-x2)•[f(x1-f(x2)]<0不成立,故①不正確;
在②中,$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<1不成立,故②不正確;
在③中,∵f(x)在(0,$\frac{1}{e}$)上函數(shù)單調(diào)遞減,($\frac{1}{e}$,+∞)上函數(shù)單調(diào)遞增,
∴f(x1)-f(x2)<x1-x2不成立,
∴f(x1)+x2<f(x2)+x1不成立,故③不正確;
令g(x)=$\frac{f(x)}{x}$=lnx,則g′(x)=$\frac{1}{x}$,(0,+∞)上函數(shù)單調(diào)遞增,
∵x2>x1>0,∴g(x2)>g(x1),∴x2•f(x1)<x1•f(x2),故④正確.
故答案為:④.
點(diǎn)評(píng) 本題考查命題真假的判斷,是中檔題,解題時(shí)要認(rèn)真審題,注意構(gòu)造法和導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(\frac{1}{4a},0)$ | B. | $(0,\frac{1}{16a})$ | C. | $(0,-\frac{1}{16a})$ | D. | $(\frac{1}{16a},0)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 有一個(gè)解 | B. | 有兩個(gè)解 | C. | 無(wú)解 | D. | 不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com