設函數(shù),其中為常數(shù)。
(Ⅰ)當時,判斷函數(shù)在定義域上的單調性;
(Ⅱ)若函數(shù)有極值點,求的取值范圍及的極值點。
(Ⅰ)函數(shù)在定義域上單調遞增;(Ⅱ)當且僅當時有極值點; 當時,有惟一最小值點;當時,有一個極大值點和一個極小值點.
【解析】
試題分析:(Ⅰ)函數(shù)在定義域上的單調性的方法,一是利用定義,二是利用導數(shù),此題既有代數(shù)函數(shù)又有對數(shù)函數(shù),顯然利用導數(shù)判斷,只需對求導,判斷的符號即可;(Ⅱ)求的極值,只需對求導即可,利用導數(shù)求函數(shù)的極值一般分為四個步驟:①確定函數(shù)的定義域;②求出;③令,列表;④確定函數(shù)的極值.此題由(Ⅰ)得,當時,函數(shù)無極值點,只需討論的情況,解的根,討論在范圍內根的個數(shù),從而確定的取值范圍及的極值點,值得注意的是,求出的根時,忽略討論根是否在定義域內,而出錯.
試題解析:(Ⅰ)由題意知,的定義域為, ∴當時,,函數(shù)在定義域上單調遞增.
(Ⅱ)①由(Ⅰ)得,當時,函數(shù)無極值點,②時,有兩個相同的解,但當時,,當時,時,函數(shù)在上無極值點,③當時,有兩個不同解,,時,,而,此時 ,隨在定義域上的變化情況如下表:
減 |
極小值 |
增 |
由此表可知:當時,有惟一極小值點
ii) 當時,0<<1,此時,,隨的變化情況如下表:
增 |
極大值 |
減 |
極小值 |
增 |
由此表可知:時,有一個極大值,和一個極小值點; 綜上所述:當且僅當時有極值點; 當時,有惟一最小值點;當時,有一個極大值點和一個極小值點
考點:導數(shù)與函數(shù)的單調性、導數(shù)與函數(shù)的極值,考查學生的基本推理能力及運算能力.
科目:高中數(shù)學 來源: 題型:
設函數(shù),其中為常數(shù)。
(Ⅰ)當時,判斷函數(shù)在定義域上的單調性;
(Ⅱ)若函數(shù)有極值點,求的取值范圍及的極值點。
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆山西省高三第一學期8月月考文科數(shù)學試卷(解析版) 題型:解答題
設函數(shù),其中為常數(shù)。
(Ⅰ)當時,判斷函數(shù)在定義域上的單調性;
(Ⅱ)若函數(shù)有極值點,求的取值范圍及的極值點。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年江西省高三10月月考文科數(shù)學卷 題型:解答題
設函數(shù),其中為常數(shù).
(1)證明:對任意,的圖象恒過定點;
(2)當時,判斷函數(shù)是否存在極值?若存在,證明你的結論并求出所有
極值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年廣東省高三上學期10月月考理科數(shù)學卷 題型:解答題
(本小題滿分14分)20. (14分)設函數(shù),其中為常數(shù).
(1)當時,判斷函數(shù)在定義域上的單調性;
(2)若函數(shù)的有極值點,求的取值范圍及的極值點;
(3)求證對任意不小于3的正整數(shù),不等式都成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com