【題目】某班主任對全班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:

積極參加班級工作

不太主動參加班級工作

合計

學(xué)習(xí)積極性高

18

7

25

學(xué)習(xí)積極性一般

6

19

25

合計

24

26

50

參考公式及數(shù)據(jù):

PK2k

0.050

0.010

0.001

k

3.841

6.635

10.828


(1)如果隨機(jī)抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運(yùn)用獨(dú)立性檢驗(yàn)的思想方法分析:學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度是否有關(guān)系?并說明理由?

【答案】
(1)解:積極參加班級工作的學(xué)生有24人,總?cè)藬?shù)為50人.概率為 = ;不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生有19人,概率為 .
(2)解:由表中數(shù)據(jù)可得K2= = ≈11.5>10.828,

∴有99.9%的把握說學(xué)習(xí)積極性與對待班級工作的態(tài)度有關(guān)系.


【解析】本題主要考查了回歸分析的初步應(yīng)用、實(shí)際推斷原理和假設(shè)檢驗(yàn)的應(yīng)用,解決問題的關(guān)鍵是(1)利用古典概型概率公式求解; (2)利用公式易求K2的值,然后對照表格數(shù)據(jù)可得事件的可信度.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)判斷并證明函數(shù)f(x)在其定義域上的奇偶性;
(2)證明函數(shù)f(x)在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2(a+2)x+a2 , g(x)=﹣x2+2(a﹣2)x﹣a2+8.設(shè)H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)},(其中max{p,q}表示p,q中的較大值,min{p,q}表示p,q中的較小值).記H1(x)的最小值為A,H2(x)的最大值為B,則A﹣B=(
A.a2﹣2a﹣16
B.a2+2a﹣16
C.﹣16
D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】海上某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為12海里;在A處看燈塔C在貨輪的北偏西30°,距離為8海里;貨輪向正北由A處行駛到D處時看燈塔B在貨輪的北偏東120°.(要畫圖)
(1)A處與D處之間的距離;
(2)燈塔C與D處之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 若f(x1)=f(x2),且x1<x2,關(guān)于下列命題:(1)f(x1)>f(﹣x2);(2)f(x2)>f(﹣x1);(3)f(x1)>f(﹣x1);(4)f(x2)>f(﹣x2).正確的個數(shù)為( 。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 函數(shù)f(x)=x3+(m﹣4)x2﹣3mx+(n﹣6)x∈R的圖象關(guān)于原點(diǎn)對稱,其中m,n為實(shí)常數(shù).
(1)求m,n的值;
(2)試用單調(diào)性的定義證明:f(x)在區(qū)間[﹣2,2]上是單調(diào)函數(shù);
(3)當(dāng)﹣2≤x≤2 時,不等式f(x)≥(n﹣logma)logma恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知海島A到海岸公路BC的距離AB=50km,B,C間的距離為100km,從A到C必須先坐船到BC上的某一點(diǎn)D,航速為25km/h,再乘汽車到C,車速為50km/h,記∠BDA=θ
(1)試將由A到C所用的時間t表示為θ的函數(shù)t(θ);
(2)問θ為多少時,由A到C所用的時間t最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】軸截面是邊長為4 的等邊三角形的圓錐的直觀圖如圖所示,過底面圓周上任一點(diǎn)作一平面α,且α與底面所成的二面角為 ,已知α與圓錐側(cè)面交線的曲線為橢圓,則此橢圓的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某家具廠生產(chǎn)一種課桌,每張課桌的成本為50元,出廠單價定為80元,該廠為鼓勵銷售商多訂購,決定一次訂購量超過100張時,每超過一張,這批訂購的全部課桌出廠單價降低0.02元.根據(jù)市場調(diào)查,銷售商一次訂購量不會超過1000張.
(1)設(shè)一次訂購量為x張,課桌的實(shí)際出廠單價為P元,求P關(guān)于x的函數(shù)關(guān)系式P(x);
(2)當(dāng)一次訂購量x為多少時,該家具廠這次銷售課桌所獲得的利潤f(x)最大?其最大利潤是多少元?(家具廠售出一張課桌的利潤=實(shí)際出廠單價﹣成本).

查看答案和解析>>

同步練習(xí)冊答案