【題目】下列對各事件發(fā)生的概率判斷正確的是( )
A.某學(xué)生在上學(xué)的路上要經(jīng)過4個路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是,那么該生在上學(xué)路上到第3個路口首次遇到紅燈的概率為
B.三人獨(dú)立地破譯一份密碼,他們能單獨(dú)譯出的概率分別為,,,假設(shè)他們破譯密碼是彼此獨(dú)立的,則此密碼被破譯的概率為
C.甲袋中有8個白球,4個紅球,乙袋中有6個白球,6個紅球,從每袋中各任取一個球,則取到同色球的概率為
D.設(shè)兩個獨(dú)立事件A和B都不發(fā)生的概率為,A發(fā)生B不發(fā)生的概率與B發(fā)生A不發(fā)生的概率相同,則事件A發(fā)生的概率是
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù),其中,.
(1)若為定值,求的最大值;
(2)求證:對任意,有 ;
(3)若,,求證:對任意,直線與曲線有唯一公共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題表示雙曲線,命題表示橢圓.
(1)若命題p與命題q都為真命題,則p是q的什么條件?
(2)若為假命題,且為真命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B分別是橢圓的左、右端點(diǎn),F是橢圓的右焦點(diǎn),點(diǎn)P在橢圓上,且位于x軸上方,PA⊥PF.
(1)點(diǎn)P的坐標(biāo);
(2)設(shè)M是橢圓長軸AB上的一點(diǎn),M到直線AP的距離等于MB,求橢圓上的點(diǎn)到點(diǎn)M的距離d的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) 是的一個極值點(diǎn).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市工業(yè)部門計劃對所轄中小型企業(yè)推行節(jié)能降耗技術(shù)改造,下面是對所轄企業(yè)是否支持技術(shù)改造進(jìn)行的問卷調(diào)查的結(jié)果:
支持 | 不支持 | 合計 | |
中型企業(yè) | 40 | ||
小型企業(yè) | 240 | ||
合計 | 560 |
已知從這560家企業(yè)中隨機(jī)抽取1家,抽到支持技術(shù)改造的企業(yè)的概率為.
(1)能否在犯錯誤的概率不超過0.025的前提下認(rèn)為“是否支持節(jié)能降耗技術(shù)改造”與“企業(yè)規(guī)!庇嘘P(guān)?
(2)從支持節(jié)能降耗的中小企業(yè)中按分層抽樣的方法抽出8家企業(yè),然后從這8家企業(yè)選出2家進(jìn)行獎勵,分別獎勵中型企業(yè)20萬元,小型企業(yè)10萬元.求獎勵總金額為20萬元的概率.
附:
0.05 | 0.025 | 0.01 | |
3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我校高一年級研究性學(xué)習(xí)小組共有9名學(xué)生,其中有3名男生和6名女生.在研究性學(xué)習(xí)過程中,要進(jìn)行兩次匯報活動(即開題匯報和結(jié)題匯報),每次匯報都從這9名學(xué)生中隨機(jī)選1 人作為代表發(fā)言.設(shè)每人每次被選中與否均互不影響.
(1)求兩次匯報活動都由小組成員甲發(fā)言的概率;
(2)設(shè)為男生發(fā)言次數(shù)與女生發(fā)言次數(shù)之差的絕對值,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線:(為參數(shù),),曲線:(為參數(shù)),與相切于點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求的極坐標(biāo)方程及點(diǎn)的極坐標(biāo);
(2)已知直線:與圓:交于,兩點(diǎn),記的面積為,的面積為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在零點(diǎn),證明:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com