【題目】已知方程只有一個(gè)實(shí)數(shù)根,則的取值范圍是( )
A.或B.或C.D.或
【答案】A
【解析】
令,則原方程轉(zhuǎn)化成,令,顯然,問題轉(zhuǎn)化成函數(shù)在上只有一個(gè)零點(diǎn)1,求導(dǎo)后再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,由此可得答案.
解:令,則原方程轉(zhuǎn)化成,即,
令,顯然,
問題轉(zhuǎn)化成函數(shù)在上只有一個(gè)零點(diǎn)1,
,
若,則在單調(diào)遞增,,此時(shí)符合題意;
若,則,在單調(diào)遞增,,此時(shí)符合題意;
若,記,
則函數(shù)開口向下,對(duì)稱軸,過,,
當(dāng)即即時(shí),,在單調(diào)遞減,,此時(shí)符合題意;
當(dāng)即即時(shí),設(shè)有兩個(gè)不等實(shí)根,,
又,對(duì)稱軸,所以,
則在單調(diào)遞減,單調(diào)遞增,單調(diào)遞增,
由于,所以,
取,,
記 令,
則,所以,
結(jié)合零點(diǎn)存在性定理可知,函數(shù)在存在一個(gè)零點(diǎn),不符合題意;
綜上,符合題意的的取值范圍是或,
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸端點(diǎn)為,,點(diǎn)是橢圓上的動(dòng)點(diǎn),且不與,重合,點(diǎn)滿足,.
(Ⅰ)求動(dòng)點(diǎn)的軌跡方程;
(Ⅱ)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)中,布勞威爾不動(dòng)點(diǎn)定理是拓?fù)鋵W(xué)里一個(gè)非常重要的不動(dòng)點(diǎn)定理,它可應(yīng)用到有限維空間,并構(gòu)成一般不動(dòng)點(diǎn)定理的基石.布勞威爾不動(dòng)點(diǎn)定理得名于荷蘭數(shù)學(xué)家魯伊茲·布勞威爾(L.E. J. Brouwer),簡(jiǎn)單的講就是對(duì)于滿足一定條件的連續(xù)函數(shù),存在一個(gè)點(diǎn),使得,那么我們稱該函數(shù)為“不動(dòng)點(diǎn)”函數(shù),下列為“不動(dòng)點(diǎn)”函數(shù)的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在五面體中,四邊形為矩形,為等邊三角形,且平面平面.
(1)證明:平面平面;
(2)若,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的極值;
(2)當(dāng)時(shí),討論的單調(diào)性;
(3)若對(duì)任意的,,恒有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國(guó)武漢于2019年10月18日至2019年10月27日成功舉辦了第七屆世界軍人運(yùn)動(dòng)會(huì).來自109個(gè)國(guó)家的9300余名運(yùn)動(dòng)員同臺(tái)競(jìng)技.經(jīng)過激烈的角逐,獎(jiǎng)牌榜的前3名如下:
國(guó)家 | 金牌 | 銀牌 | 銅牌 | 獎(jiǎng)牌總數(shù) |
中國(guó) | 133 | 64 | 42 | 239 |
俄羅斯 | 51 | 53 | 57 | 161 |
巴西 | 21 | 31 | 36 | 88 |
某數(shù)學(xué)愛好者采用分層抽樣的方式,從中國(guó)和巴西獲得金牌選手中抽取了22名獲獎(jiǎng)代表.從這22名中隨機(jī)抽取3人, 則這3人中中國(guó)選手恰好1人的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD與BDEF均為菱形,∠DAB=∠DBF=60°,且FA=FC.
(Ⅰ)求證:AC⊥平面BDEF;
(Ⅱ)求證:FC∥平面EAD;
(Ⅲ)求二面角A﹣FC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐A-BCD中,平面ABC丄平面ADC, AD丄AC,AD=AC, ,若此三棱錐的外接球表面積為,則三棱錐A-BCD體積的最大值為( )
A.7B.12C.6D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解該校某年級(jí)學(xué)生的閱讀量(分鐘),隨機(jī)抽取了名學(xué)生調(diào)查一天的閱讀時(shí)間,統(tǒng)計(jì)結(jié)果如下圖表所示:
組號(hào) | 分組 | 男生人數(shù) | 男生人數(shù)占本組人數(shù)的頻率 | 頻率分布直方圖 |
第1組 | 5 | 0.5 | ||
第2組 | 18 | 0.9 | ||
第3組 | 27 | 0.9 | ||
第4組 | 0.36 | |||
第5組 | 3 | 0.2 |
(1)求出的值并估計(jì)該校學(xué)生一天的人均閱讀時(shí)間;
(2)一天的閱讀時(shí)間不少于35分鐘稱為“喜好閱讀者”.根據(jù)以上數(shù)據(jù),完成下面的列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“喜好閱讀者”與“性別”有關(guān)?
喜好閱讀者 | 非喜好閱讀者 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
附:(其中為樣本容量).
() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com