4.若a=ln2,$b={5^{-\frac{1}{2}}}$,$c=\int_0^{\frac{π}{2}}{\frac{1}{2}cosxdx}$的大小關(guān)系為(  )
A.b<c<aB.b<a<cC.a<b<cD.c<b<a

分析 利用對數(shù)函數(shù)的性質(zhì),判斷a>$\frac{1}{2}$,b<$\frac{1}{2}$,利用定積分的性質(zhì)求得c=$\frac{1}{2}$,即可判斷a、b和c的大。

解答 解:a=ln2>ln$\sqrt{e}$=$\frac{1}{2}$,$b={5^{-\frac{1}{2}}}$=$\frac{\sqrt{5}}{5}$<$\frac{1}{2}$,$c=\int_0^{\frac{π}{2}}{\frac{1}{2}cosxdx}$=$\frac{1}{2}$sinx|${\;}_{0}^{\frac{π}{2}}$=$\frac{1}{2}$
∴a>c>b,
故選:A

點(diǎn)評 本題考查求定積得值及指數(shù)函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)i為虛數(shù)單位,復(fù)數(shù)z滿足$\frac{(1+i)^{2}}{z}$=1-i,則復(fù)數(shù)$\overline{z}$=( 。
A.-1-iB.1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.同時拋擲兩顆質(zhì)地相同的骰子(各面上分別標(biāo)有1,2,3,4,5,6的正方體玩具),點(diǎn)數(shù)之和是5的概率是$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.定義運(yùn)算$a*b=\left\{\begin{array}{l}a({a≤b})\\ b({a>b})\end{array}\right.$.例如,1*2=1,則函數(shù)f(x)=2sinx*cosx在區(qū)間[0,2π]上的單調(diào)遞增區(qū)間為(0,$\frac{π}{4}$),(π,$\frac{5π}{4}$),($\frac{3π}{2},2π$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.與直線l:mx-m2y-1=0垂直,垂足為點(diǎn)P(2,1)的直線方程是( 。
A.mx+m2y-1=0B.x+y+3=0C.x-y-3=0D.x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知向量$\overrightarrow a=({1,-1}),\overrightarrow b=({6,-4})$,若$\overrightarrow a⊥({t\overrightarrow a+\overrightarrow b})$,則t的取值范圍是-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.根據(jù)規(guī)律填出后面的第幾個數(shù),現(xiàn)給出一組數(shù):$\frac{1}{2}$,$\frac{1}{2}$,$\frac{3}{8}$,$\frac{1}{4}$,$\frac{5}{32}$,它的第8個數(shù)是$\frac{1}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知f(x)=$\frac{x}{|lnx|}$,若關(guān)于x的方程[f(x)]2-(2m+1)f(x)+m2+m=0恰好有4個不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍為(  )
A.($\frac{1}{e}$,2)∪(2,e)B.($\frac{1}{e}$+1,e)C.(e-1,e)D.($\frac{1}{e}$,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,直線L的參數(shù)方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+2ρ2sin2θ=12,且直線與曲線C交于P,Q兩點(diǎn)
(1)求曲線C的普通方程及直線L恒過的定點(diǎn)A的坐標(biāo);
(2)在(1)的條件下,若|AP||AQ|=6,求直線L的普通方程.

查看答案和解析>>

同步練習(xí)冊答案