已知-1≤x≤2,求函數(shù)f(x)=3+2.3x+1-9x的最大值和最小值.
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:令3x=t,可得
1
3
≤t≤9,函數(shù)f(x)=-(t-3)2+12,再利用二次函數(shù)的性質(zhì)求得它的最大值和最小值.
解答: 解:令3x=t,∵-1≤x≤2,∴
1
3
≤t≤9,∴函數(shù)f(x)=3+2.3x+1-9x =-t2+6t+3=-(t-3)2+12,
故當(dāng)t=3時,函數(shù)f(x)取得最大值為12,當(dāng)t=9時,函數(shù)取得最小值為-24.
點評:本題主要考查二次函數(shù)的性質(zhì),指數(shù)函數(shù)的定義域和值域,體現(xiàn)了換元、轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(2,0),若向量λ
a
+
b
與向量
c
=(1,-2)共線,則實數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f′(x)是函數(shù)f (x)的導(dǎo)函數(shù),f(x)=sinx+2xf′(0),則f′(
π
2
)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

y=f(x)的圖象在點P(1,f(1))處的切線方程為y=-2x+10,導(dǎo)函數(shù)為f′(x),則f(1)+f′(1)的值為( 。
A、-2B、2C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知3a=
3
,lgx=a,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x-2
2x-1
,則f(
1
11
)+f(
2
11
)+f(
3
11
)+…+f(
10
11
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

M={x∈R|(1+k2)x≤k4+4},對任意的k∈R,總有( 。
A、2∉M,0∉M
B、2∈M,0∈M
C、2∈M,0∉M
D、2∉M,0∈M

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f (t)=log2(2-t)+
t-1
的定義域為D.
(Ⅰ) 求D;
(Ⅱ) 若函數(shù)g(x)=x2+2mx-m2在D上存在最小值2,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若F1,F(xiàn)2是橢圓
x2
25
+
y2
16
=1的兩個焦點,過F2的直線與橢圓交于A,B兩點,則△ABF1的周長為
 

查看答案和解析>>

同步練習(xí)冊答案