【題目】已知函數(shù)滿足,對于任意,且.令.
(1)求函數(shù)解析式;
(2)探求函數(shù)在區(qū)間上的零點個數(shù).
【答案】(1);(2)當(dāng)或時,函數(shù)在上有一個零點,當(dāng)時,函數(shù)在上沒有零點.
【解析】
試題分析:(1)由,得,由可知,以及任意,可得,綜合求得;(2)是一分段函數(shù),先討論對稱軸和與絕對值零點的大小,再在每種情況下討論絕對值零點和區(qū)間端點的大小關(guān)系進(jìn)行分類討論.
試題解析:(1)由,得,由可知, 所以,又對于任意,,即都成立, 所以,,,
所以.
(2),
若,,其對稱軸為,當(dāng),即時,函數(shù)在上為增函數(shù); 當(dāng),即時,函數(shù)在上為減函數(shù), 在上為增函數(shù);若,其對稱軸為,此時, 所以函數(shù)在上為減函數(shù), 在上為增函數(shù), 且,所以函數(shù)在上有一個零點;當(dāng)時 ,,沒有零點;當(dāng)時,函數(shù)在上為增函數(shù), 在上為減函數(shù),且,若,即時,函數(shù)在上沒有零點, 若,即時, 函數(shù)在上有一個零點.綜上得, 當(dāng)或時函數(shù)
在上有一個零點;當(dāng)時,函數(shù)在上沒有零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某海濱城市附近海面有一臺風(fēng),據(jù)監(jiān)測,當(dāng)前臺風(fēng)中心位于城市(如圖)的東偏南方向300km的海面處,并以20km/h的速度向西偏北方向移動,臺風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,并以10km/h的速度不斷增大,問幾小時后該城市開始受到臺風(fēng)的侵襲?受到臺風(fēng)侵襲的時間有多少小時?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cos C+(cos A- sin A)cos B=0.
(1)求角B的大。
(2)若a+c=1,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓:.
(1)直線過點,且與圓交于兩點,若,求直線的方程;
(2)過圓上一動點作平行于軸的直線,設(shè)與軸的交點為,若向量,求動點的軌跡方程,并說明此軌跡是什么曲線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線y=kx+b通過第一、三、四象限,則有 ( )
A. k>0,b>0 B. k>0,b<0 C. k<0,b>0 D. k<0,b<0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的離心率,長軸長為4.
(1)求橢圓的方程;
(2)設(shè)動直線與橢圓有且只有一個公共點,過右焦點作直線與直線交與點,且.求證:點在定直線上,并求出定直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列的前項和為,并且,數(shù)列滿足:,記數(shù)列的前項和為.
(1)求數(shù)列的通項公式及前項和為;
(2)求數(shù)列的通項公式及前項和為;
(3)記集合,若的子集個數(shù)為16,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)在上是奇函數(shù),且對任意都有,當(dāng)時,,:
(Ⅰ)求的值;
(Ⅱ)判斷的單調(diào)性,并證明你的結(jié)論;
(Ⅲ)求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:
①垂直于同一平面的兩條直線相互平行;
②平行于同一平面的兩條直線相互平行;
③若一條直線平行于一個平面內(nèi)的無數(shù)條直線,那么這條直線平行于這個平面;
④若一條直線垂直于一個平面內(nèi)的任一條直線,那么這條直線垂直于這個平面.
其中真命題的個數(shù)是( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com