【題目】如圖,在三棱柱中,底面,,點是的中點.
(Ⅰ)求證:;
(Ⅱ)求證:∥平面.
(Ⅲ)設(shè),,在線段上是否存在點,使得?若存在,確定點的位置; 若不存在,說明理由.
【答案】(Ⅰ)見解析;(Ⅱ)見解析; (Ⅲ)存在,為線段的中點,理由略.
【解析】
試題分析:(Ⅰ)通過證得,且,即可證得平面,即證;
(Ⅱ) 設(shè)與的交點為,連結(jié),因為是的中點,是的中點,由三角形的中位線定理得∥,又由線面平行的判定定理即證∥平面;
(Ⅲ) 在線段上存在點,使得,且為線段的中點.證明如下:由已知得.
由已知,為線段的中點,所以,可得平面.連接.因為平面,所以,易證,所以平面,即可得.
試題解析:(Ⅰ)在三棱柱中,因為底面,底面,
所以.
又,,
所以平面.
而,
則.
(Ⅱ)設(shè)與的交點為,連結(jié),
因為是的中點,是的中點,
所以∥.
因為平面,平面,
所以∥平面.
(Ⅲ)在線段上存在點,使得,且為線段的中點.
證明如下:因為底面,底面,所以.
由已知,為線段的中點,
所以.
又,
所以平面.
取線段的中點,連接.
因為平面,所以.
由已知,由平面幾何知識可得.
又,所以平面.
又平面,
所以.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱中, 平面, , , , , 為的中點.
(Ⅰ)求四棱錐的體積;
(Ⅱ)設(shè)點在線段上,且直線與平面所成角的正弦值為,求線段的長度;
(Ⅲ)判斷線段上是否存在一點,使得?(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應(yīng)號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組銷售數(shù)據(jù),如下表所示:
(已知, ).
(1)求出的值;
(2)已知變量具有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(元)的線性回歸方程;(3)用表示用正確的線性回歸方程得到的與對應(yīng)的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個數(shù)據(jù)中任取2個,求抽取的2個數(shù)據(jù)中至少有1個是“好數(shù)據(jù)”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(2+x)=f(2﹣x),其圖象開口向上,頂點為A,與x軸交于點B(﹣1,0)和C點,且△ABC的面積為18.
(1)求此二次函數(shù)的解析式;
(2)若方程f(x)=m(x﹣1)在區(qū)間[0,1]有解,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:直線,一個圓與軸正半軸與軸正半軸都相切,且圓心到直線的距離為.
()求圓的方程.
()是直線上的動點, , 是圓的兩條切線, , 分別為切點,求四邊形的面積的最小值.
()圓與軸交點記作,過作一直線與圓交于, 兩點, 中點為,求最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校課題組為了研究學生的數(shù)學成績和物理成績之間的關(guān)系,隨機抽取高二年級20名學生某次考試成績(百分制)如表所示:
序號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
數(shù)學成績 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
物理成績 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
若數(shù)學成績90分(含90分)以上為優(yōu)秀,物理成績85(含85分)以上為優(yōu)秀.有多少把握認為學生的數(shù)學成績與物理成績之間有關(guān)系( )
A.99.5%
B.99.9%
C.97.5%
D.95%
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)滿足對任意的m,n都有f(m+n)=f(m)+f(n)-1,設(shè)g(x)=f(x)+(a>0,a≠1),g(ln2018)=-2015,則g(ln)=______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】高二年級有甲、乙、丙三個班參加社會實踐活動,高二年級老師要分到各個班級帶隊,其中男女老師各一半,每次任選兩個老師,將其中一個老師分到甲班,如果這個老師是男老師,就將另一個老師分到乙班,否則就分到丙班,重復(fù)上述過程,直到所有老師都分到班級,則
A. 乙班女老師不多于丙班女老師 B. 乙班男老師不多于丙班男老師
C. 乙班男老師與丙班女老師一樣多 D. 乙班女老師與丙班男老師一樣多
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com