13.已知cos2α=$\frac{3}{5}$,則sin4α-cos4α的值為( 。
A.$-\frac{3}{5}$B.$-\frac{1}{5}$C.$\frac{1}{5}$D.$\frac{3}{5}$

分析 根據(jù)題意,由余弦的二倍角公式可得cos2α=cos2α-sin2α=$\frac{3}{5}$,將sin4α-cos4α變形可得sin4α-cos4α=-(cos2α-sin2α),兩者聯(lián)立即可得答案.

解答 解:∵cos2α=$\frac{3}{5}$,
∴cos2α=cos2α-sin2α=$\frac{3}{5}$,
∴sin4α-cos4α=-(cos2α+sin2α)(cos2α-sin2α)=-(cos2α-sin2α)=-$\frac{3}{5}$,
故選:A.

點評 本題考查余弦二倍角公式以及同角三角函數(shù)基本關(guān)系式的運用,關(guān)鍵是將sin4α-cos4α恒等變形,與cos2α建立關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y-1≤0}\end{array}\right.$,則目標函數(shù)z=2x+y的最大值為( 。
A.1B.2C.3D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)集合A={x|1≤x≤4},B={x|m≤x≤m+1}.
(1)當m=3時,求A∩B與A∩∁RB;
(2)若A∩B=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若m∈(0,1),a=3m,b=log3m,c=m3則用“>”將a,b,c按從大到小可排列為a>c>b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知a>b,橢圓C1的方程為$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1,雙曲線C2的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,C1與C2的離心率之積為$\frac{\sqrt{3}}{2}$,則C2的漸近線方程為$x±\sqrt{2}y=0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.平行四邊形ABCD中,AB=4,AD=2,$\overrightarrow{AB}$•$\overrightarrow{AD}=4$,點P在邊CD上,則$\overrightarrow{PA}$•$\overrightarrow{PB}$的最大值是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是470

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=x-$\frac{1}{x}$,
(1)判斷函數(shù)f(x)的奇偶性;
(2)證明:f(x)在(0,+∞)上為單調(diào)增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知2k是k與k+3的等比中項,則k等于1.

查看答案和解析>>

同步練習(xí)冊答案