1.已知函數(shù)f(x)是定義在R上的奇函數(shù),且滿足f(x)+f(4-x)=0,f(3)=9,則f(2015)+f(2016)+f(2017)=( 。
A.9B.-9C.0D.1

分析 根據(jù)函數(shù)奇偶性和周期性進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵f(x)+f(4-x)=0,即f(x+4)=f(x),
∴函數(shù)f(x)是周期為4的周期函數(shù),
則f(2015)=f(503×4+3)=f(3),
f(2016)=f(504×4)=f(0),
f(2017=)=f(504×4+1)=f(1),
∵f(x)是奇函數(shù),
∴f(0)=0,
當(dāng)x=-1時,f(-1+4)=f(-1)=-f(1)=f(3),
即f(1)+f(3)=0
即f(2016)+f(2017)+f(2018)=f(0)+f(1)+f(3)=0,
故選:C.

點評 本題主要考查函數(shù)值的計算,根據(jù)函數(shù)奇偶性和周期性的性質(zhì)結(jié)合條件關(guān)系進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.質(zhì)點P從如圖放置的正方形ABCD的頂點A出發(fā),根據(jù)擲骰子的情況,按照以下的規(guī)則在頂點間來回移動:如果朝上數(shù)字大于等于5,向平行于AB邊的方向移動;如果朝上數(shù)字小于等于4,向平行于AD邊的方向移動.記擲骰子2n(n∈N*)次后質(zhì)點P回到A點的概率為an,回到C點的概率為cn
(I)求a1的值;
(II)當(dāng)n=2時,設(shè)X表示質(zhì)點P到達(dá)C點的次數(shù),X的分布列和期望;
(III)當(dāng)m=2015時,試比較a2015c2015,$\frac{1}{2}$的大小(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ex,g(x)=lnx+1,
(1)求函數(shù)h(x)=f(x-1)-g(x)在區(qū)間[1,+∞)上的最小值;
(2)已知1≤y<x,求證:ex-y-1>lnx-lny;
(3)設(shè)H(x)=(x-1)2f(x),在區(qū)間(1,+∞)內(nèi)是否存在區(qū)間[a,b](a>1),使函數(shù)H(x)在區(qū)間[a,b]的值域也是[a,b]?請給出結(jié)論,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=sinxcosx-sin2($\frac{π}{4}$-x).
(1)求函數(shù)f(x)的對稱軸方程;
(2)求函數(shù)y=f(x-$\frac{π}{8}$)在x∈[0,$\frac{π}{2}$]上的最大值與最小值以及取得最值時相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.2016年里約奧運會在巴西里約舉行,為了接待來自國內(nèi)外的各界人士,需招募一批志愿者,要求志愿者不僅要有一定的氣質(zhì),還需有豐富的人文、地理、歷史等文化知識.志愿者的選拔分面試和知識問答兩場,先是面試,面試通過后每人積60分,然后進(jìn)入知識問答.知識問答有A,B,C,D四個題目,答題者必須按A,B,C,D順序依次進(jìn)行,答對A,B,C,D四題分別得20分、20分、40分、60分,每答錯一道題扣20分,總得分在面試60分的基礎(chǔ)上加或減.答題時每人總分達(dá)到100分或100分以上,直接錄用不再繼續(xù)答題;當(dāng)四道題答完總分不足100分時不予錄用. 假設(shè)志愿者甲面試已通過且第二輪對A,B,C,D四個題回答正確的概率依次是$\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,且各題回答正確與否相互之間沒有影響.
(Ⅰ) 用X表示志愿者甲在知識問答結(jié)束時答題的個數(shù),求X的分布列和數(shù)學(xué)期 望;
(Ⅱ)求志愿者甲能被錄用的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某數(shù)學(xué)興趣小組舉行了一次趣味口答競賽,共有5名同學(xué)參加.競賽分兩個環(huán)節(jié):搶答環(huán)節(jié)和抽答環(huán)節(jié),其中搶答環(huán)節(jié)共有4道題,抽答環(huán)節(jié)僅有1道題.
(1)假設(shè)搶答環(huán)節(jié)每人搶答成功的概率均相等,則甲同學(xué)成功搶答2次的概率是$\frac{96}{625}$;
(2)已知搶答環(huán)節(jié)有3名同學(xué)成功搶答,抽答環(huán)節(jié)從裝有5名同學(xué)名簽的紙盒中隨機(jī)抽。旱谝淮尾扇∮蟹呕氐爻槿,若第一次抽到的是搶答成功的同學(xué),則從第二次開始采取無放回地抽取,整個抽答環(huán)節(jié)抽到未搶答成功的同學(xué)即停止.那么抽取的次數(shù)X的數(shù)學(xué)期望E(X)=2.2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.班主任為了對本班學(xué)生的考試成績進(jìn)行分析,決定從全班36名女同學(xué),24名男同學(xué)中隨機(jī)抽取一個容量為5的樣本進(jìn)行分析.
(1)如果按性別比例分層抽樣,可以得到多少個不同的樣本?(只要求寫出計算式即可)
(2)隨機(jī)抽取5位,他們的數(shù)學(xué)分?jǐn)?shù)從小到大排序是:89,91,93,95,97,物理分?jǐn)?shù)從小到大排序是:87,89,89,92,93
①若規(guī)定90分以上為優(yōu)秀,求這5位同學(xué)中恰有2位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;②若這5位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)事實上對應(yīng)如表:
學(xué)生編號12345
數(shù)學(xué)分?jǐn)?shù)x8991939597
物理分?jǐn)?shù)y8789899293
根據(jù)上表數(shù)據(jù),用變量y與x的相關(guān)系數(shù)或散點圖說明物理成績y與數(shù)學(xué)成績x之間線性相關(guān)關(guān)系的強弱.如果具有較強的線性相關(guān)關(guān)系,求y與x的線性回歸方程(系數(shù)精確到0.01);如果不具有線性相關(guān)性,請說明理由.
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$;回歸直線的方程是:$\stackrel{∧}{y}$=bx+a,其中對應(yīng)的回歸估計值b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\stackrel{∧}{{y}_{i}}$是與xi對應(yīng)的回歸估計值.
參考值:$\sqrt{15}$≈3.9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.高考數(shù)學(xué)試題中共有10道選擇題,每道選擇題都有4個選項,其中有且僅有一個是正確的.評分標(biāo)準(zhǔn)規(guī)定:“每題只選1項,答對得5分,不答或答錯得0分.”某考生每道題都給出了一個答案,已確定有6道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個選項是錯誤的,有一道題可以判斷一個選項是錯誤的,還有一道題因不理解題意只能亂猜,試求出該考生:
(Ⅰ)得50分的概率;
(Ⅱ)得多少分的可能性最大;
(Ⅲ)所得分?jǐn)?shù)ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-alnx-\frac{1}{3}(a∈R,a≠0)$.
(1)當(dāng)a=3時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間與極值.
(3)若對任意的x∈[1,+∞),都有f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案