已知關(guān)于x的不等式x2-ax+1<0的解集為(
1
2
,2),則實(shí)數(shù)a=
 
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:由不等式的解集得到不等式所對(duì)應(yīng)方程的兩根,然后結(jié)合一元二次方程根與系數(shù)關(guān)系求解.
解答: 解:∵關(guān)于x的不等式x2-ax+1<0的解集為(
1
2
,2),
1
2
,2為方程x2-ax+1=0的兩個(gè)根,
則由根與系數(shù)關(guān)系得,a=
1
2
+2
=
5
2

故答案為:
5
2
點(diǎn)評(píng):本題考查了一元二次不等式的解集與對(duì)應(yīng)方程根的關(guān)系,考查了一元二次方程根與系數(shù)關(guān)系,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C三點(diǎn)的坐標(biāo)分別為A(3,0)、B(0,3)、C(cosα,sinα),α∈(
π
2
,
2

(1)若|
AC
|=|
BC
|,求角α的值;
(2)若
AC
BC
=-1,求
2sin2α+sin2α
1-tanα
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x3-7x2-12x+1在區(qū)間[-5,1]上最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),若對(duì)于定義域內(nèi)任意x1,x2(x1≠x2),均有
f(x1)-f(x2)
x1-x2
=f′(
x1+x2
2
)恒成立,則稱f(x)為“恒均變函數(shù)”.給出下列函數(shù):
①f(x)=ex;  
②f(x)=2x+1;  
③f(x)=x2-2x+1; 
④f(x)=
1
x
;  
⑤f(x)=lnx.
其中為“恒均變函數(shù)”的所有序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a6=3,a7=-2,則a3+a4+…+a10=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-3x的極大值與極小值的和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①若tanα=-
1
2
,α∈(0,π),則α=arctan(-
1
2

②若α,β是銳角△ABC的內(nèi)角,則sinα>cosβ;
③函數(shù)y=sin(
2
3
x-
7
2
π)是偶函數(shù);
④函數(shù)y=sin2x的圖象向左平移
π
4
個(gè)單位,得到y(tǒng)=sin(2x+
π
4
)的圖象.
其中正確的命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班有學(xué)生52人,現(xiàn)用系統(tǒng)抽樣的方法,抽取一個(gè)容量為4的樣本,已知座位號(hào)分別為6,45的同學(xué)都在樣本中,那么樣本中另兩位同學(xué)的座位號(hào)應(yīng)分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={a,b,c,d,e},集合M={a,b,c},N={b,d,e},那么∁UM∩∁UN是( 。
A、{a,c}B、vlxltfz
C、∅D、{b,e}

查看答案和解析>>

同步練習(xí)冊(cè)答案