已知函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點A(0,1)和B(-1,0),且b2-4a≤0.求f(x)的解析式.
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題設(shè),得f(0)=1,f(-1)=0,c=1,b=a+1,代入b2-4a≤0,得(a+1)2-4a≤0,即(a-1)2≤0,解得a=1,b=2.即可求出解析式.
解答: 解:∵函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點A(0,1)和B(-1,0),
∴得f(0)=1,f(-1)=0,
求得:c=1,b=a+1.
∵b2-4a≤0,
∴得(a+1)2-4a≤0,即(a-1)2≤0,
解得a=1,b=2.
所以f(x)=x2+2x+1.
點評:本題考查了二次函數(shù)的性質(zhì),結(jié)合不等式求解,屬于中檔題,難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示四棱錐E-ABCD中,四邊形ABCD為正方形,AE⊥平面CDB,且AR=3,
AB=6.
(1)求證:AB⊥平面ADE;
(2)求四棱錐E-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)x,y滿足|x+1|+(y-1)2=0,則x+y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=4,an+1=3an-2(n∈N+
(1)求證:數(shù)列{an-1}為等比數(shù)列,并求出數(shù)列{an}的通項公式;
(2)令bn=log3(a1-1)+log3(a2-1)+…+log3(an-1),求數(shù)列{
1
bn
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某項化學(xué)實驗,要把2種甲類物質(zhì)和3種乙類物質(zhì)按照先放甲類物質(zhì)后放乙類物質(zhì)的順序,依次放入某種液體中,觀察反應(yīng)結(jié)果.現(xiàn)有符合條件的3種甲類物質(zhì)和5種乙類物質(zhì)可供使用.
問:這個實驗一共要進(jìn)行多少次,才能得到所有的實驗結(jié)果?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
3
)+a(a為實常數(shù)),且當(dāng)x∈[-
π
12
,
π
12
]時,f(x)的最大值與最小值之和為3.
(1)求實數(shù)a的值;
(2)說明函數(shù)y=f(x)的圖象經(jīng)過怎樣的變換可以得到函數(shù)y=sinx的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知底面是正三角形,且側(cè)棱都相等且垂直的三棱錐,4個頂點都在同一個球上,球心到底面距離為
3
3
,求球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合P={1,2,3,4,5},對任意k∈P和正整數(shù)m,記f(m,k)=
5
i=1
[m
k+1
i+1
],其中,[a]表示不大于a的最大整數(shù),若f(m,k)=19,則mk=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1+tanα
1-tanα
=2014,則
1
cos2α
+tan2α=
 

查看答案和解析>>

同步練習(xí)冊答案