對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設(shè)f″(x)是函數(shù)y=f(x)的導(dǎo)數(shù)y=f′(x)的導(dǎo)數(shù),若方程f″(x)=0有實(shí)數(shù)解x0,則稱(chēng)點(diǎn)(x0,f(x0))為函數(shù)y=f(x)的“拐點(diǎn)”.有同學(xué)發(fā)現(xiàn)“任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱(chēng)中心;且“拐點(diǎn)”就是對(duì)稱(chēng)中心.”請(qǐng)你根據(jù)這一發(fā)現(xiàn),函數(shù)f(x)=x3-3x2+3x+1對(duì)稱(chēng)中心為
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:根據(jù)函數(shù)f(x)的解析式求出f′(x)和f″(x),令f″(x)=0,求得x的值,由此求得函數(shù)f(x)=x3-3x2+3x+1對(duì)稱(chēng)中心.
解答: 解:(1)∵函數(shù)f(x)=x3-3x2+3x+1,∴f′(x)=3x2 -6x+3,∴f″(x)=6x-6.
令 f″(x)=6x-6=0,解得 x=1,且f(1)=2,故函數(shù)f(x)=x3-3x2+3x對(duì)稱(chēng)中心為(1,2),
故答案為 (1,2).
點(diǎn)評(píng):本題主要考查函數(shù)與導(dǎo)數(shù)等知識(shí),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查化簡(jiǎn)計(jì)算能力,函數(shù)的對(duì)稱(chēng)性的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示程序框圖,若輸入n=6,m=3,那么輸出的p等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)i是虛數(shù)單位,復(fù)數(shù)1+i為方程x2-2x+m=0(m∈R)的一個(gè)根,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an},若a2+a3+a7=6,則a1+a7=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題:“存在正實(shí)數(shù)x,y,使5x+5y=5x+y成立”的否定形式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=
2-x-x2
的定義域是A,不等式
2-x
x+1
≤0的解集是B,則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,是2008年底CCTV舉辦的全國(guó)鋼琴、小提琴大賽比賽現(xiàn)場(chǎng)上七位評(píng)委為某選手打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)方差為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖.若輸入x=3,則輸出k的值是( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿(mǎn)足不等式組
x-2≥0
x+y+1≥0
2x-y+1≥0
,則y-3x的最大值為( 。
A、-6B、-3C、-2D、-1

查看答案和解析>>

同步練習(xí)冊(cè)答案