(05福建卷)是定義在R上的以3為周期的偶函數(shù),且,
則方程=0在區(qū)間(0,6)內(nèi)解的個(gè)數(shù)的最小值是 (   )
A.5B.4C.3D.2
B

試題分析:解:∵f(x)是定義在R上的偶函數(shù),且周期是3,f(2)=0,∴f(-2)=0,∴f(5)=f(2)=0,f(1)=f(-2)=0,f(4)=f(1)=0,即在區(qū)間(0,6)內(nèi), f(2)=0,f(5)=0,f(1)=0,f(4)=0,故答案:B
點(diǎn)評(píng):本題考查函數(shù)的奇偶性、根的存在性及個(gè)數(shù)判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)是定義在R上的奇函數(shù),且對(duì)任意都有,當(dāng)時(shí),,則       。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是定義在上的奇函數(shù),且當(dāng)時(shí),.若對(duì)任意的,
不等式恒成立,則實(shí)數(shù)的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知偶函數(shù)在區(qū)間上是增函數(shù),如果,則的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(1)討論的奇偶性;
(2)判斷上的單調(diào)性并用定義證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知對(duì)任意實(shí)數(shù),有,且時(shí),則時(shí)(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是定義在上的奇函數(shù),當(dāng)時(shí),,則,在上所有零點(diǎn)之和為(   )
A.7B.8 C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知函數(shù),且
(1)求;
(2)判斷的奇偶性;
(3)試判斷上的單調(diào)性,并證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè), 則使為奇函數(shù)且在上單調(diào)遞增的值的個(gè)數(shù)為      .

查看答案和解析>>

同步練習(xí)冊(cè)答案