已知函數(shù)
是奇函數(shù),且
.
(1)求函數(shù)
的解析式;
(2)求函數(shù)
在區(qū)間
上的最小值
(1)
(2)
(1)∵f(x)是奇函數(shù),∴對定義域內(nèi)的任意的x,都有
,
即
,整理得:
∴q="0 "
又∵
,∴
, 解得p="2 "
∴所求解析式為
(2)由(1)可得
=
,
在區(qū)間
上是減函數(shù).證明如下:
設(shè)
,
則由于
因此,當(dāng)
時(shí),
從而得到
即,
∴
在區(qū)間
是減函數(shù).
故,函數(shù)
在區(qū)間
上的最小值
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖所示,設(shè)點(diǎn)A是單位圓上的定點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā)在圓上按逆時(shí)針方向旋轉(zhuǎn)一周,點(diǎn)P所經(jīng)過的
的長為
,弦AP的長為
,則函數(shù)
的圖象大致是
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
若存在實(shí)常數(shù)
和
,使得函數(shù)
和
對其定義域上的任意實(shí)數(shù)
分別滿足:
和
,則稱直線
為
和
的“隔離直線”.已知
,
(其中
為自然對數(shù)的底數(shù)),根據(jù)你的數(shù)學(xué)知識,推斷
與
間的隔離直線方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知函數(shù)
的定義域?yàn)镽,對任意的
都滿足
,當(dāng)
時(shí),
.
(1)判斷并證明
的單調(diào)性和奇偶性;
(2)是否存在這樣的實(shí)數(shù)m,當(dāng)
時(shí),使不等式
對所有
恒成立,如存在,求出m的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(Ⅰ)將日利潤
y(元)表示成日產(chǎn)量
x(件)的函數(shù);
(Ⅱ)求該廠的日產(chǎn)量為多少件時(shí),日利潤最大?并求出日利潤的最大值
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.
(Ⅰ)求
的解析式;
(Ⅱ)若數(shù)列
滿足:
(
),且
, 求數(shù)列
的通項(xiàng);
(Ⅲ)求證:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(1)求
的解析式;
(2) 當(dāng)
時(shí),不等式:
恒成立,求實(shí)數(shù)
的范圍.
(3)設(shè)
,求
的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
某摩托車生產(chǎn)企業(yè),上年度生產(chǎn)摩托車的投入成本為1萬元/輛,出廠價(jià)為1.2萬元/輛,年銷售量為1 000輛.本年度為適應(yīng)市場需求,計(jì)劃提高產(chǎn)品檔次,適度增加投入成本.若每輛車投入成本增加的比例為x (0<x<1),則出廠價(jià)相應(yīng)提高的比例為0.75x, 同時(shí)預(yù)計(jì)年銷售量增加的比例為0.6x.已知年利潤=(出廠價(jià)-投入成本)×年銷售量.
(1)寫出本年度預(yù)計(jì)的年利潤y與投入成本增加的比例x的關(guān)系式;
(2)為使本年度利潤比上年有所增加,問投入成本增加的比例x應(yīng)在什么范圍內(nèi)?
查看答案和解析>>