如圖:是⊙的直徑,垂直于⊙所在的平面,PA="AC," 是圓周上不同于的任意一點(diǎn),(1) 求證:平面。(2) 求二面角 P-BC-A 的大小。
(1)利用線面垂直的性質(zhì)可得線線垂直,再利用線面垂直的判定定理,可得結(jié)論;
(2)∠PCA=450

試題分析(1)利用線面垂直的性質(zhì)可得線線垂直,再利用線面垂直的判定定理,可得結(jié)論;(2)利用二面角的求解。
因?yàn)橐驗(yàn)镻A⊥平面ABC,且BC?平面ABC,所以PA⊥BC.又△ABC中,AB是圓O的直徑,所以BC⊥AC.、又PA∩AC=A,所以BC⊥平面PAC.
(2)在第一問的基礎(chǔ)上,由于是⊙的直徑,垂直于⊙所在的平面,PA="AC," 是圓周上不同于的任意一點(diǎn),那么可知二面角 P-BC-A 的大小450
點(diǎn)評:本題考查直線與平面垂直的判定定理,平面與平面垂直的判定定理,考查空間圖形的位置關(guān)系,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,側(cè)面底面,,中點(diǎn),底面是直角梯形,,,

(1) 求證:平面;
(2) 求證:平面平面;
(3) 設(shè)為棱上一點(diǎn),,試確定的值使得二面角

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,

(I)求證
(II)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC 中,∠C =90°,∠B =30°,AC=1,M 為 AB 中點(diǎn),將△ACM 沿 CM 折起,使 A、B 間的距離為 ,則 M 到面 ABC 的距離為(  )

(A)
(B)
(C)1
(D)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知多面體中,⊥平面,⊥平面 ,的中點(diǎn).

(1)求證:⊥平面;
(2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直三棱柱中,

(1)求異面直線 與所成角的大小;
(2)求多面體的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,底面是正方形,側(cè)面底面,若、分別為的中點(diǎn).

(Ⅰ) 求證://平面;
(Ⅱ) 求證:平面平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正方形所在的平面與正方形所在的平面相垂直,、分別是、的中點(diǎn).

(1)求證:面;
(2)求直線與平面所成的角正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分1 2分)
如圖,四邊形ABCD中,,AD∥BC,AD =6,BC =4,AB =2,點(diǎn)E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABCD平面EFDC,設(shè)AD中點(diǎn)為P.

( I )當(dāng)E為BC中點(diǎn)時,求證:CP//平面ABEF
(Ⅱ)設(shè)BE=x,問當(dāng)x為何值時,三棱錐A-CDF的體積有最大值?并求出這個最大值。

查看答案和解析>>

同步練習(xí)冊答案