已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)極值點(diǎn),且,求證:;
(Ⅲ)設(shè),對(duì)于任意時(shí),總存在,使成立,求實(shí)數(shù)的取值范圍.

(1)的遞增區(qū)間為,遞減區(qū)間為;(2)詳見解析;(Ⅲ)實(shí)數(shù)的取值范圍為

解析試題分析:(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間,由于函數(shù)含有對(duì)數(shù)函數(shù),可通過求導(dǎo)來確定單調(diào)區(qū)間,由函數(shù),對(duì)求導(dǎo)得,,令,,解不等式得函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)有兩個(gè)極值點(diǎn),且,求證:,由于有兩個(gè)極值點(diǎn),則有兩個(gè)不等的實(shí)根,由根與系數(shù)關(guān)系可得,,用表示,代入,利用即可證明;(Ⅲ)對(duì)于任意時(shí),總存在,使成立,即恒成立,因此求出,這樣問題轉(zhuǎn)化為,上恒成立,構(gòu)造函數(shù),分類討論可求出實(shí)數(shù)的取值范圍.
試題解析:
(1)當(dāng)時(shí),,
,,
的遞增區(qū)間為,遞減區(qū)間為.
(2)由于有兩個(gè)極值點(diǎn),則有兩個(gè)不等的實(shí)根,


設(shè)
,上遞減,
,即.
(Ⅲ),

,,遞增,
,
上恒成立
,
上恒成立
,又
當(dāng)時(shí),,在(2,4)遞減,,不合;
當(dāng)時(shí),,
時(shí),在(2,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=xax2bln x,曲線yf(x)在點(diǎn)P(1,0)處的切線斜率為2.
(1)求a,b的值;
(2)證明:f(x)≤2x-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)記函數(shù)的最小值為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,半徑為30的圓形(為圓心)鐵皮上截取一塊矩形材料,其中點(diǎn)在圓弧上,點(diǎn)在兩半徑上,現(xiàn)將此矩形材料卷成一個(gè)以為母線的圓柱形罐子的側(cè)面(不計(jì)剪裁和拼接損耗),設(shè)與矩形材料的邊的夾角為,圓柱的體積為.

(Ⅰ)求關(guān)于的函數(shù)關(guān)系式?
(Ⅱ)求圓柱形罐子體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求曲線在點(diǎn)處的切線方程;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若存在使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),.
(1)若,則,滿足什么條件時(shí),曲線處總有相同的切線?
(2)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;
(3)當(dāng)時(shí),若對(duì)任意的恒成立,求的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=lnx-ax(a>0).
(I)當(dāng)a=2時(shí),求f(x)的單調(diào)區(qū)間與極值;
(Ⅱ)若對(duì)于任意的x∈(0,+),都有f(x)<0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),
(Ⅰ)當(dāng)時(shí),求函數(shù)的極小值;
(Ⅱ)若函數(shù)上為增函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若在區(qū)間上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案