橢圓+=1(a>b>0)的離心率e=,左焦點(diǎn)為F,A、B、C為其三個(gè)頂點(diǎn),直線CF與AB交于D,則tan∠BDC的值等于(    )

A.3            B.-3            C.             D.-
A
∵e==,
∴a=2c,b=c.
∴直線AB的方程為+=1,kAB=,同理,kFC=-.
∴tan∠BDC===3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一束光線從點(diǎn)出發(fā),經(jīng)直線上一點(diǎn)反射后,恰好穿過點(diǎn).(Ⅰ)求點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)的坐標(biāo);
(Ⅱ)求以、為焦點(diǎn)且過點(diǎn)的橢圓的方程;
(Ⅲ)設(shè)直線與橢圓的兩條準(zhǔn)線分別交于、兩點(diǎn),點(diǎn)為線段上的動(dòng)點(diǎn),求點(diǎn) 到的距離與到橢圓右準(zhǔn)線的距離之比的最小值,并求取得最小值時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知三角形ABC的三個(gè)頂點(diǎn)均在橢圓上,且點(diǎn)A是橢圓短軸的一個(gè)端點(diǎn)(點(diǎn)A在y軸正半軸上).
(1)若三角形ABC的重心是橢圓的右焦點(diǎn),試求直線BC的方程;若角A為,AD垂直BC于D,試求點(diǎn)D的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)橢圓=1的焦點(diǎn)為F1、F2,P是橢圓上任意一點(diǎn),一條斜率為的直線交橢圓于A、B兩點(diǎn),如果當(dāng)a變化時(shí),總可同時(shí)滿足:
①∠F1PF2的最大值為;
②直線l:ax+y+1=0平分線段AB.
求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓中心在原點(diǎn),焦點(diǎn)在橫軸上,焦距為4,且和直線3x+2y-16=0相切,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在橢圓+=1上取三點(diǎn),其橫坐標(biāo)滿足x1+x3=2x2,三點(diǎn)順次與某一焦點(diǎn)連接的線段長(zhǎng)是r1、r2、r3,則有(    )
A.r1、r2、r3成等差數(shù)列B.r1、r2、r3成等比數(shù)列
C.、成等差數(shù)列D.、、成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,分別根據(jù)下列條件求橢圓的標(biāo)準(zhǔn)方程.
(1)長(zhǎng)軸、短軸長(zhǎng)之比為2∶1,一條準(zhǔn)線為x+4=0;
(2)離心率為,一條準(zhǔn)線為y=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若焦點(diǎn)在x軸上的橢圓+=1的離心率,則m等于(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓=1的準(zhǔn)線平行于x軸,則m應(yīng)滿足的條件是(   )
A.m>B.m<且m≠0
C.m<D.m>且m≠1

查看答案和解析>>

同步練習(xí)冊(cè)答案