14.為貫徹落實(shí)教育部等6部門(mén)《關(guān)于加快發(fā)展青少年校園足球的實(shí)施意見(jiàn)》,全面提高我市中學(xué)生的體質(zhì)健康水平,普及足球知識(shí)和技能,市教體局決定舉行秋季校園足球聯(lián)賽,為迎接此次聯(lián)賽,甲中學(xué)選拔了20名學(xué)生組成集訓(xùn)隊(duì),現(xiàn)統(tǒng)計(jì)了這20名學(xué)生的身高,得到莖葉圖如下:
這20名學(xué)生的身高中位數(shù)、眾數(shù)分別為177,178.

分析 由莖葉圖得這20名學(xué)生的身高從小到大依次排列,能求出這20名學(xué)生的身高的中位數(shù)和眾數(shù).

解答 解:由莖葉圖得這20名學(xué)生的身高從小到大依次為:
168,174,174,175,175,175,175,176,176,176,
178,178,178,178,178,182,185,185,185,188.
位于中間的兩個(gè)數(shù)是176和178,
∴這20名學(xué)生的身高的中位數(shù)是:$\frac{176+178}{2}$=177,
出現(xiàn)次數(shù)最多的是178,
∴這20名學(xué)生的身高的眾數(shù)為178.
故答案為:177,178.

點(diǎn)評(píng) 本題考查中位數(shù)、眾數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意莖葉圖的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.設(shè)數(shù)列{an}的通項(xiàng)公式${a_n}=ncos\frac{nπ}{2}$,前n項(xiàng)和為Sn,則S2012=1006.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知 函數(shù)f(x)=x3+(m-4)x2-3mx+(n-6)x∈R的圖象關(guān)于原點(diǎn)對(duì)稱(chēng),其中m,n為實(shí)常數(shù).
(1)求m,n的值;
(2)試用單調(diào)性的定義證明:f(x)在區(qū)間[-2,2]上是單調(diào)函數(shù);
(3)當(dāng)-2≤x≤2 時(shí),不等式f(x)≥(n-logma)logma恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.求值:
(1)${({0.064})^{-\frac{1}{3}}}-{({-\frac{5}{9}})^0}+{[{{{({-2})}^3}}]^{-\frac{4}{3}}}+{16^{-0.75}}$;
(2)設(shè)3x=4y=36,求$\frac{2}{x}+\frac{1}{y}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.中國(guó)乒乓球隊(duì)備戰(zhàn)里約奧運(yùn)會(huì)熱身賽暨選撥賽于2016年7月14日在山東威海開(kāi)賽,種子選手A與非種子選手B1,B2,B3分別進(jìn)行一場(chǎng)對(duì)抗賽,按以往多次比賽的統(tǒng)計(jì),A獲勝的概率分別為$\frac{3}{4},\frac{2}{3},\frac{1}{2}$,且各場(chǎng)比賽互不影響.
(Ⅰ)若A至少獲勝兩場(chǎng)的概率大于$\frac{2}{3}$,則A入選征戰(zhàn)里約奧運(yùn)會(huì)的最終名單,否則不予入選,問(wèn)A是否會(huì)入選最終的名單?
(Ⅱ)求A獲勝場(chǎng)數(shù)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)$f(x)=\frac{e^x}{{a{x^2}+bx+1}}$,其中a,b,c∈R.
(Ⅰ)若a=b=1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=0,且當(dāng)x≥1時(shí),f(x)≥1總成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖,將菱形ABCD沿對(duì)角線(xiàn)BD折起,使得C點(diǎn)至C′,E點(diǎn)在線(xiàn)段AC′上,若二面角A-BD-E與二面角E-BD-C′的大小分別為30°和45°,則$\frac{AE}{EC′}$=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.若點(diǎn)(3,2)在函數(shù)f(x)=log5(3x-m)的圖象上,則函數(shù)y=-x${\;}^{\frac{m}{3}}$的最大值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知集合A={9,2-x,x2+1},集合B={1,2x2},若A∩B={2},則x的值為-1.

查看答案和解析>>

同步練習(xí)冊(cè)答案