【題目】下列說法不正確的是( )
A.“φ= ”是“函數(shù)y=sin(2x+?)為偶函數(shù)”的充要條件
B.若“p且q”為假,則p,q至少有一個(gè)是假命題
C.命題“?x0∈R,x02﹣x0﹣1<0”的否定是“?x∈R,x2﹣x﹣1≥0”
D.當(dāng)a<0時(shí),冪函數(shù)y=xa在(0,+∞)上是單調(diào)遞減
【答案】A
【解析】解:“φ= ”是“函數(shù)y=sin(2x+)為偶函數(shù)”的充分條件,所以A不正確; 若“p且q”為假,則p,q至少有一個(gè)是假命題,滿足復(fù)合命題真假的判斷,正確;
命題“x0∈R,x02﹣x0﹣1<0”的否定是“x∈R,x2﹣x﹣1≥0”,滿足特稱命題的否定是全稱命題,正確;
當(dāng)a<0時(shí),冪函數(shù)y=xa在(0,+∞)上是單調(diào)遞減,符合冪函數(shù)的性質(zhì),正確;
故選:A.
【考點(diǎn)精析】通過靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個(gè)命題互為逆否命題,它們有相同的真假性;兩個(gè)命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣1=0},B={x|x2﹣2ax+b=0},若A∪B=A,求實(shí)數(shù)a,b滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U={x∈N*|x≤9},(UA)∩B={1,6},A∩(UB)={2,3},(UA)∩(UB)={4,5,7,8},則B= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+2mx+2m+1=0(m∈R).
(1)若方程有兩實(shí)根,其中一根在區(qū)間(﹣1,1)內(nèi),另一根在區(qū)間(1,2)內(nèi),求m的取值范圍;
(2)若方程兩實(shí)根均在區(qū)間(﹣1,2)內(nèi),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】奇函數(shù)f(x)在(0,+∞)內(nèi)單調(diào)遞增且f(2)=0,則不等式 的解集為( )
A.(﹣∞,﹣2)∪(0,1)∪(1,2)
B.(﹣2,0)∪(1,2)
C.(﹣∞,﹣2)∪(2,+∞)
D.(﹣∞,﹣2)∪(0,1)∪(2,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知不等式x2+mx+3≤0的解集為A=[1,n],集合B={x|x2﹣ax+a≤0}.
(1)求m﹣n的值;
(2)若A∪B=A,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= +lg(x﹣1)+(x﹣3)0 的定義域?yàn)椋?)
A.{x|1<x≤4}
B.{x|1<x≤4且x≠3}
C.{x|1≤x≤4且x≠3}
D.{x|x≥4}
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用M[A]表示非空集合A中的元素個(gè)數(shù),記|A﹣B|= ,若A={1,2,3},B={x||x2﹣2x﹣3|=a},且|A﹣B|=1,則實(shí)數(shù)a的取值范圍為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com