如圖,E是圓O內(nèi)兩弦AB和CD的交點(diǎn),過AD延長(zhǎng)線上一點(diǎn)F作圓O的切線FG,G為切點(diǎn),已知EF=FG.
求證:(1);(2)EF//CB.
證明過程詳見解析
解析試題分析:本題考查切割線定理、三角形相似、同弧所對(duì)的圓周角相等、同位角相等等基礎(chǔ)知識(shí),考查學(xué)生的邏輯推理能力、轉(zhuǎn)化能力.第一問,利用切割線定理得到FG2=FA·FD,利用已知的等量關(guān)系代換式子中的FG,即得到△FED與△EAF中邊的比例關(guān)系,再由于2個(gè)三角形有一個(gè)公共角,所以得到2個(gè)三角形相似;第二問,由第一問的相似得∠FED=∠FAE,利用同弧所對(duì)的圓周角相等得∠FAE=∠DAB=∠DCB,即∠FED=∠BCD,利用同位角相等得EF∥CB.
試題解析:(1)由切割線定理得FG2=FA·FD.
又EF=FG,所以EF2=FA·FD,即.
因?yàn)椤?i>EFA=∠DFE,所以△FED∽△EAF. 6分
(2)由(1)得∠FED=∠FAE.
因?yàn)椤?i>FAE=∠DAB=∠DCB,
所以∠FED=∠BCD,所以EF∥CB. 10分
考點(diǎn):切割線定理、三角形相似、同弧所對(duì)的圓周角相等、同位角相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修4-1:幾何證明選講
如圖,四邊形是的內(nèi)接四邊形,的延長(zhǎng)線與的延長(zhǎng)線交于點(diǎn),且.
(Ⅰ)證明:;
(Ⅱ)設(shè)不是的直徑,的中點(diǎn)為,且,證明:為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在平行四邊形ABCD中,E是CD的延長(zhǎng)線上一點(diǎn),BE與AD交于點(diǎn)F,DE=CD.
(1)求證:△ABF∽△CEB;
(2)若△DEF的面積為2,求平行四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知點(diǎn)在圓直徑的延長(zhǎng)線上,切圓于點(diǎn),是的平分線交于點(diǎn),交于點(diǎn).
(1)求的度數(shù);(2)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,是圓的直徑,是延長(zhǎng)線上的一點(diǎn),是圓的割線,過點(diǎn)作的垂線,交直線于點(diǎn),交直線 于點(diǎn),過點(diǎn)作圓的切線,切點(diǎn)為.
(1)求證:四點(diǎn)共圓;(2)若,求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于點(diǎn)D.
(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC=,延長(zhǎng)CE交AB于點(diǎn)F,求△BCF外接圓的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知圓O外有一點(diǎn)P,作圓O的切線PM,M為切點(diǎn),過PM的中點(diǎn)N,作割線NAB,交圓于A、B兩點(diǎn),連接PA并延長(zhǎng),交圓O于點(diǎn)C,連接PB交圓O于點(diǎn)D,若MC=BC.
(1)求證:△APM∽△ABP;
(2)求證:四邊形PMCD是平行四邊形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,AB、CD都是圓的弦,且AB∥CD,F(xiàn)為圓上一點(diǎn),延長(zhǎng)FD、AB交于點(diǎn)E.
求證:AE·AC=AF·DE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com