【題目】已知二次函數(shù)滿足.

1)求的解析式;

2)若上單調(diào),求的取值范圍;

3)設(shè)a≠1),(),當(dāng)時,有最大值14,試求a的值.

【答案】(1)fx;(2p7,或者p3;(3a3

【解析】

1)利用代入化簡得到答案.

2)化簡得到,得到對稱軸計算得到答案.

3,設(shè)化簡為二次函數(shù)計算得到答案.

1)∵fx)=ax2+bx滿足fx1)=fx+x1,

ax12+bx1)=ax2+bx+x1,即ax2﹣(2abx+abax2+b+1x1,

所以﹣(2ab)=b+1ab=﹣1,得a,

所以fx

2)因為gx)=﹣2fx+px=﹣2+pxx2+p1x,x[2,4]上單調(diào),

所以其對稱軸x2,或者,所以p7,或者p3

3Fx)=4fax+3a2x1a2x+2ax1,(a0a≠1),

當(dāng)x[1,1]時,令tax,yt2+2t1=(t+122,

當(dāng)a1時,t,ymaxFa)=(a+12214,得a3;

當(dāng)0a1時,t,得a

a3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系,直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(Ⅰ)求的直角坐標(biāo)方程;

(Ⅱ)若曲線截直線所得線段的中點坐標(biāo)為,求的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是定義在R上的奇函數(shù),且滿足,=1,數(shù)列{}滿足=﹣1, ),其中是數(shù)列{}的前n項和,則=

A. ﹣2 B. ﹣1 C. 0 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)同時滿足:①對于定義域上的任意,恒有;②對于定義域上的任意,當(dāng)時,恒有,則稱函數(shù)為“理想函數(shù)”.給出下列四個函數(shù)中:① ; ②; ③; ④ ,能被稱為“理想函數(shù)”的有_____(請將所有正確命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a是實常數(shù),函數(shù)

1)若曲線處的切線過點A0,﹣2),求實數(shù)a的值;

2)若有兩個極值點),

求證:;

求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了適應(yīng)高考改革,某中學(xué)推行“創(chuàng)新課堂”教學(xué).高一平行甲班采用“傳統(tǒng)教學(xué)”的教學(xué)方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學(xué)方式授課,為了比較教學(xué)效果,期中考試后,分別從兩個班中各隨機抽取名學(xué)生的成績進行統(tǒng)計分析,結(jié)果如下表:(記成績不低于分者為“成績優(yōu)秀”)

分?jǐn)?shù)

甲班頻數(shù)

乙班頻數(shù)

(1)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認為“成績優(yōu)秀與教學(xué)方式有關(guān)”?

甲班

乙班

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

(2)在上述樣本中,學(xué)校從成績?yōu)?/span>的學(xué)生中隨機抽取人進行學(xué)習(xí)交流,求這人來自同一個班級的概率.

參考公式:,其中.

臨界值表

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足條件是偶函數(shù), ,且的圖象與直線恰有一個公共點.

1)求的解析式;

2)設(shè),是否存在實數(shù),使得函數(shù)在區(qū)間上的最大值為2?如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時,求曲線在點處切線的方程;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)當(dāng)時,恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)一種產(chǎn)品,根據(jù)預(yù)測可知,該產(chǎn)品的產(chǎn)量平穩(wěn)增長,記2015年為第1年,第x年與年產(chǎn)量(萬件)之間的關(guān)系如下表所示:

x

1

2

3

4

4.00

5.52

7.00

8.49

現(xiàn)有三種函數(shù)模型:,

1)找出你認為最適合的函數(shù)模型,并說明理由,然后選取這兩年的數(shù)據(jù)求出相應(yīng)的函數(shù)解析式;

2)因受市場環(huán)境的影響,2020年的年產(chǎn)量估計要比預(yù)計減少30%,試根據(jù)所建立的函數(shù)模型,估計2020年的年產(chǎn)量.

查看答案和解析>>

同步練習(xí)冊答案