探照燈反射鏡的軸截面是拋物線y2=2px(x>0)的一部分,光源位于拋物線的焦點處,已知燈口圓的直徑為60cm,燈深40cm,則拋物線的焦點坐標為( 。
A、(
45
2
,0)
B、(
45
4
,0)
C、(
45
8
,0)
D、(
45
16
,0)
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:依題意可知點(40,30)在拋物線上,代入拋物線方程得302=80p,求出p,即可求出拋物線的焦點坐標.
解答: 解:由題意,拋物線方程為y2=2px
依題意可知點(40,30)在拋物線上,代入拋物線方程得302=80p
解得p=
45
4

∴拋物線的焦點坐標為(
45
4
,0),
故選:C,
點評:本題考查拋物線方程的求法與性質(zhì),是基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

集合A={x|1<x<2},集合B={x|x>1},則A∩B=( 。
A、(-∞,-1)∪(1,2)
B、(1,+∞)
C、(1,2)
D、[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的奇函數(shù),且f(x+2)=-f (x),當0≤x≤1時,f(x)=x.
(1)求f(π)的值;
(2)當-4≤x≤4時,求f(x)的圖象與x軸圍成圖形的面積.
(3)求函數(shù)f(x)的解析式及單調(diào)區(qū)間.(不必寫推導(dǎo)過程)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={x|x2-3(a+1)x+2(3a+1)<0},B={x|
x-2a
x-(a2+1)
<0},若A⊆B,求a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

與橢圓
x2
64
+
y2
100
=1共焦點,且與雙曲線
x2
2
-y2=1有相同漸近線的雙曲線方程是( 。
A、
x2
12
-
y2
24
=1
B、
x2
24
-
y2
12
=1
C、
y2
24
-
x2
12
=1
D、
y2
12
-
x2
24
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

點M與點F(3,0)的距離比它到直線x+5=0的距離小2,則點M的軌跡方程為( 。
A、y2=-12x
B、y2=6x
C、y2=12x
D、y2=-6x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用二分法求函數(shù)f(x)=3x-x-4的一個零點,其參考數(shù)據(jù)如下:
f(1.6)=0.200f(1.5875)=0.133f(1.5750)=0.067
f(1.5625)=0.003f(1.5562)=-0.029f(1.550)=-0.060
據(jù)此數(shù)據(jù),可得f(x)的一個零點的近似值(精確到0.01)為( 。
A、1.58B、1.57
C、1.56D、1.55

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1的離心率為
2
,點F為雙曲線C的右焦點,過F作傾斜角為60°的直線交C于A、B兩點,且
AF
FB
.則實數(shù)λ=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的幾何體中,直線AF⊥平面ABCD,且ABCD為正方形,ADEF為梯形,DE∥AF,又AB=1,AF=2DE=2a.
(Ⅰ)求證:直線CE∥平面ABF;
(Ⅱ)求證:直線BD⊥平面ACF;
(Ⅲ)若直線AE⊥CF,求a的值.

查看答案和解析>>

同步練習冊答案