【題目】連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷(xiāo)售額利潤(rùn)資料如表:

商品名稱

A

B

C

D

E

銷(xiāo)售額x/千萬(wàn)元

3

5

6

7

9

利潤(rùn)額y/百萬(wàn)元

2

3

3

4

5

(參考公式: = = , = x)
(1)畫(huà)出銷(xiāo)售額和利潤(rùn)額的散點(diǎn)圖
(2)若銷(xiāo)售額和利潤(rùn)額具有相關(guān)關(guān)系,試計(jì)算利潤(rùn)額y對(duì)銷(xiāo)售額x的回歸直線方程.
(3)估計(jì)要達(dá)到1000萬(wàn)元的利潤(rùn)額,銷(xiāo)售額約為多少萬(wàn)元.

【答案】
(1)解:根據(jù)表中所給的五對(duì)數(shù)對(duì),在平面直角坐標(biāo)系中畫(huà)出散點(diǎn)圖,

如圖所示;


(2)解:∵ = =6, = ,

∴n =5×6× =102,

xiyi=3×2+5×3+6×3+7×4+9×5=112,

=32+52+62+72+92=200,

n =5×62=180,

= = =0.5,

= = ﹣0.5×6= =0.4,

∴利潤(rùn)額y對(duì)銷(xiāo)售額x的回歸直線方程是 =0.5x+0.4


(3)解:根據(jù)題意,令 =0.5x+0.4=10,

解得x=19.2(千萬(wàn)元),

∴銷(xiāo)售額約為19.2千萬(wàn)元


【解析】(1)根據(jù)表中所給的數(shù)對(duì),在平面直角坐標(biāo)系中畫(huà)出散點(diǎn)圖即可;(2)求出對(duì)應(yīng)的數(shù)值 、 以及n 、 xiyi 和n ,代入公式即可求出回歸直線方程的系數(shù)與方程;(3)根據(jù)題意,令 =10,求出x的值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,E、F分別為CD、DD1的中點(diǎn),則異面直線EF與A1C1所成角的余弦值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知空間四個(gè)點(diǎn)A(1,1,1),B(﹣4,0,2),C(﹣3,﹣1,0),D(﹣1,0,4),則直線AD與平面ABC所成的角為(
A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一名心率過(guò)速患者服用某種藥物后心率立刻明顯減慢,之后隨著藥力的減退,心率再次慢慢升高,則自服藥那一刻起,心率關(guān)于時(shí)間的一個(gè)可能的圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左焦點(diǎn)F及點(diǎn)A(0,b),原點(diǎn)O到直線FA的距離為
(1)求橢圓C的離心率e;
(2)若點(diǎn)F關(guān)于直線l:2x+y=0的對(duì)稱點(diǎn)P在圓O:x2+y2=4上,求橢圓C的方程及點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的圖象關(guān)于直線 對(duì)稱,且兩相鄰對(duì)稱中心之間的距離為
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若關(guān)于x的方程f(x)+log2k=0在區(qū)間 上總有實(shí)數(shù)解,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC=

(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,在其定義域既是奇函數(shù)又是減函數(shù)的是(
A.y=|x|
B.y=﹣x3
C.y=( x
D.y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn)
(1)求證:DE∥平面ABC;
(2)求三棱錐E﹣BCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案