已知橢圓C的中心在原點,焦點在x軸上,離心率為
,短軸長為4
.
(I)求橢圓C的標準方程;
(II)直線x=2與橢圓C交于P、Q兩點,A、B是橢圓O上位于直線PQ兩側的動點,且直線AB的斜率為
.
①求四邊形APBQ面積的最大值;
②設直線PA的斜率為
,直線PB的斜率為
,判斷
+
的值是否為常數(shù),并說明理由.
試題分析:解:(Ⅰ)設橢圓C的方程為
. 1分
由已知b=
離心率
,得
所以,橢圓C的方程為
. 4分
(Ⅱ)①由(Ⅰ)可求得點P、Q的坐標為
,
,則
, 5分
設A
B(
),直線AB的方程為
,代人
得:
.
由△>0,解得
,由根與系數(shù)的關系得
7分
四邊形APBQ的面積
故當
…②由題意知,直線PA的斜率
,直線PB的斜率
則
10分
=
=
,由①知
可得
所以
的值為常數(shù)0. 13分
點評:主要是考查了直線與橢圓的位置關系的運用,屬于中檔題。
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:填空題
設拋物線的頂點在原點,準線方程為x =﹣2,則拋物線的方程是 .
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
直線
與橢圓
相交于
,
兩點,
為坐標原點.
(Ⅰ)當點
的坐標為
,且四邊形
為菱形時,求
的長;
(Ⅱ)當點
在
上且不是
的頂點時,證明:四邊形
不可能為菱形.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線
(
且
為常數(shù)),
為其焦點.
(1)寫出焦點
的坐標;
(2)過點
的直線與拋物線相交于
兩點,且
,求直線
的斜率;
(3)若線段
是過拋物線焦點
的兩條動弦,且滿足
,如圖所示.求四邊形
面積的最小值
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓C:的長軸長為
,離心率
.
Ⅰ)求橢圓C的標準方程;
Ⅱ)若過點B(2,0)的直線
(斜率不等于零)與橢圓C交于不同的兩點E,F(xiàn)(E在B,F(xiàn)之間),且
OBE與
OBF的面積之比為
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
過雙曲線
的左焦點F作⊙O:
的兩條切線,記切點為A,B,雙曲線左頂點為C,若
,則雙曲線的離心率為____________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
如圖,南北方向的公路
,A地在公路正東2 km處,B地在A東偏北30
0方向2
km處,河流沿岸曲線
上任意一點到公路
和到
地距離相等.現(xiàn)要在曲線
上一處建一座碼頭,向
兩地運貨物,經測算,從
到
、到
修建費用都為a萬元/km,那么,修建這條公路的總費用最低是( )萬元
A.(2+)a | B.2(+1)a | C.5a | D.6ª |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,己知直線l與拋物線
相切于點P(2,1),且與x軸交于點A,定點B(2,0).
(1)若動點M滿足
,求點M軌跡C的方程:
(2)若過點B的直線
(斜率不為零)與(1)中的軌跡C交于不同的兩點E,F(xiàn)(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖,在△ABC中,∠CAB=∠CBA=30°,AC、BC邊上的高分別為BD、AE,則以A、B為焦點,且過D、E的橢圓與雙曲線的離心率分別為
,則
.
查看答案和解析>>