(本小題共12分)

已知函數(shù)

(Ⅰ)若時,函數(shù)在其定義域是增函數(shù),求b的取值范圍;

(Ⅱ)在(1)的結(jié)論下,設(shè)函數(shù)的最小值;

(Ⅲ)設(shè)函數(shù)的圖象C1與函數(shù)的圖象C2交于P、Q,過線段PQ的中點R作x軸的垂線分別交C1、C2于點M、N,問是否存在點R,使C1在M處的切線與C2在N處的切線互相平行?若存在,求出R的橫坐標;若不存在,請說明理由。

 

【答案】

(Ⅰ)依題意:

上是增函數(shù),∴恒成立,…(2分)

∴b的取值范圍為…………(4分)

(Ⅱ)設(shè)

∴當上為增函數(shù),

當t=1時,…………………………………………       (5分)

   ………………    (6分)

上為減函數(shù),

當t=2時,…………………………………………………………(7分)

綜上所述,當

…………………………………………… (8分)

(Ⅲ)設(shè)點P、Q的坐標是

則點M、N的橫坐標為

C1在M處的切線斜率為C­2­在點N處的切線斜率

假設(shè)C1在點M處的切線與C2在點N處的切線平行,則

  

……………………(10分)

設(shè)…………………………①

所以上單調(diào)遞增,故

 則這與①矛盾,假設(shè)不成立

故C1在點M處的切線與C2在點N處的切線不平行!  (12分)

 

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

. (本小題共12分)已知橢圓E:的焦點坐標為),點M(,)在橢圓E上(1)求橢圓E的方程;(2)O為坐標原點,⊙的任意一條切線與橢圓E有兩個交點,,求⊙的半徑。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年內(nèi)蒙古呼倫貝爾市高三第三次模擬考試文科數(shù)學試卷 題型:解答題

(本小題共12分)如圖,已知⊥平面,是正三角形,,且的中點

 

 

(1)求證:∥平面;

(2)求證:平面BCE⊥平面

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年內(nèi)蒙古呼倫貝爾市高三第三次模擬考試文科數(shù)學試卷 題型:解答題

(本小題共12分)某中學的高二(1)班男同學有名,女同學有名,老師按照分層抽樣的方法組建了一個人的課外興趣小組.

(Ⅰ)求某同學被抽到的概率及課外興趣小組中男、女同學的人數(shù);

(Ⅱ)經(jīng)過一個月的學習、討論,這個興趣小組決定選出兩名同學做某項實驗,方法是先從小組里選出名同學做實驗,該同學做完后,再從小組內(nèi)剩下的同學中選一名同學做實驗,求選出的兩名同學中恰有一名女同學的概率;

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年甘肅省天水市高三上學期第一階段性考試理科數(shù)學卷 題型:解答題

(本小題共12分)

如圖,在正三棱柱ABC—A1B1C1中,點D是棱AB的中點,BC=1,AA1=

(1)求證:BC1//平面A1DC;

(2)求二面角D—A1C—A的大小

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆黑龍江省高一上學期期末考試理科數(shù)學 題型:解答題

(本小題共12分)已知函數(shù)

(1)求函數(shù)圖象的對稱中心

(2)已知,求證:.

(3)求的值.

 

查看答案和解析>>

同步練習冊答案