5.設向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,1),若向量$\overrightarrow{a}$-λ$\overrightarrow$與向量$\overrightarrow{c}$=(5,-2)共線,則λ的值為( 。
A.$\frac{4}{3}$B.$\frac{4}{13}$C.-$\frac{4}{9}$D.4

分析 由平面向量坐標運算法則先求出$\overrightarrow{a}$-λ$\overrightarrow$,再由向量$\overrightarrow{a}$-λ$\overrightarrow$與向量$\overrightarrow{c}$=(5,-2)共線,能求出λ.

解答 解:∵向量$\overrightarrow{a}$=(1,2),$\overrightarrow$=(2,1),
∴$\overrightarrow{a}$-λ$\overrightarrow$=(1-2λ,2-λ),
∵向量$\overrightarrow{a}$-λ$\overrightarrow$與向量$\overrightarrow{c}$=(5,-2)共線.
∴(1-2λ)×(-2)-(2-λ)×5=0,
解得λ=$\frac{4}{3}$.
故選:A.

點評 本題考查實數(shù)值的求法,是基礎題,解題時要認真審題,注意平面向量坐標運算法則和向量共線的性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

15.定義在R上的函數(shù)f(x)滿足f(-x)=-f(x),f(x+2)=f(x),當x∈(0,1)時,f(x)=x,則f(2011.5)=-0.5.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=sin2$\frac{x}{2}$+$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若x∈[$\frac{π}{2}$,π],求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如圖,在矩形ABCD中,AB=3,BC=2,若點E為BC的中點,點F在CD上,$\overrightarrow{AB}$•$\overrightarrow{AF}$=6,則$\overrightarrow{AE}$•$\overrightarrow{BF}$的值為-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.設函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>1)}\\{{x}^{2}+1(x≤1)}\end{array}\right.$,則f(f(1))的值為(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.若函數(shù)f(x)=x2+ax+b的圖象與x軸的一個交點為(1,0),對稱軸為x=2,則函數(shù)f(x)的解析式為f(x)=x2-4x+3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在平面直角坐標系xOy中,已知向量$\overrightarrow{m}$=(1,-1),$\overrightarrow{n}$=(sinx,cosx),x∈(0,$\frac{π}{2}$).
(1)若$\overrightarrow{m}$⊥$\overrightarrow{n}$,求x的值;
(2)若$\overrightarrow{m}$與$\overrightarrow{n}$的夾角為$\frac{π}{3}$,求x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.四棱錐P-ABCD的底面與四個側面的形狀和大小如圖所示.

(1)寫出四棱錐P-ABCD中四對線面垂直關系(不要求證明);
(2)在四棱錐P-ABCD中,若E為PA的中點,求證:BE∥平面PCD;
(3)在四棱錐P-ABCD中,設面PAB與面PCD所成的角為θ(0°<θ≤90°),求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.若$|{\overrightarrow{AB}}|=18,|{\overrightarrow{AC}}|=5$,則$|{\overrightarrow{BC}}|$的取值范圍是[13,23].

查看答案和解析>>

同步練習冊答案