已知等差數(shù)列的首項(xiàng),公差,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別是等比數(shù)列的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).
(1)求數(shù)列、的通項(xiàng)公式;
(2)設(shè)數(shù)列對任意的,均有成立,求

(1),   (2).

解析試題分析:(1)由已知得,
所以,解得
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a3/7/1kkxr3.png" style="vertical-align:middle;" />,所以.所以
,,所以等比數(shù)列的公比,
所以
(2)由 ①,得當(dāng)時(shí),
 ②,
①-②,得當(dāng)時(shí),,所以2).
時(shí),,所以.所以
所以

考點(diǎn):等差數(shù)列與等比數(shù)列的綜合;數(shù)列的求和.
點(diǎn)評:本題考查了等比數(shù)列的性質(zhì),以及等差數(shù)列和等比數(shù)列的通項(xiàng)公式的求法,對于復(fù)雜數(shù)列的前n項(xiàng)和求法我們一般先求出數(shù)列的通項(xiàng)公式,再依據(jù)數(shù)列的特點(diǎn)采取具體的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知等比數(shù)列 的所有項(xiàng)均為正數(shù),首項(xiàng)成等差數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前項(xiàng)和為求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)等差數(shù)列的前項(xiàng)和為,且,.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足 ,求的通項(xiàng)公式;
(3)求數(shù)列 項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

定義:如果數(shù)列的任意連續(xù)三項(xiàng)均能構(gòu)成一個(gè)三角形的三邊長,則稱為“三角形”數(shù)列.對于“三角形”數(shù)列,如果函數(shù)使得仍為一個(gè)“三角形”數(shù)列,則稱是數(shù)列的“保三角形函數(shù)”,.
(Ⅰ)已知是首項(xiàng)為2,公差為1的等差數(shù)列,若是數(shù)列的“保三角形函數(shù)”,求k的取值范圍;
(Ⅱ)已知數(shù)列的首項(xiàng)為2010,是數(shù)列的前n項(xiàng)和,且滿足,證明是“三角形”數(shù)列;
(Ⅲ)根據(jù)“保三角形函數(shù)”的定義,對函數(shù),,和數(shù)列1,,,()提出一個(gè)正確的命題,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且an是Sn與2的等差中項(xiàng),數(shù)列{an}中,b1=1,點(diǎn)P(bn,bn+1)在直線x-y+2=0上.
(Ⅰ) 求數(shù)列{an},{bn}的通項(xiàng)公式an和bn
(Ⅱ) 設(shè)cn=an•bn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在等差數(shù)列中,,前項(xiàng)和為,等比數(shù)列各項(xiàng)均為正數(shù),,且的公比
(1)求;(2)求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和為,
求數(shù)列的通項(xiàng);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a、b、c成等差數(shù)列且公差,求證:、不可能成等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知數(shù)列中, ,).
(1)計(jì)算,;
(2)猜想數(shù)列的通項(xiàng)公式并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

同步練習(xí)冊答案