【題目】已知橢圓的中心在坐標(biāo)原點,焦點在軸上,左頂點為,左焦點為,點在橢圓上,直線與橢圓交于, 兩點,直線, 分別與軸交于點

(Ⅰ)求橢圓的方程;

(Ⅱ)以為直徑的圓是否經(jīng)過定點?若經(jīng)過,求出定點的坐標(biāo);若不經(jīng)過,請說明理由.

【答案】;()經(jīng)過兩定點, .

【解析】試題分析:()橢圓的左焦點為,所以.由點在橢圓上,得,進(jìn)而解出得到橢圓的方程;()直線與橢圓聯(lián)立,解得的坐標(biāo)(用表示),設(shè)出的方程,解出的坐標(biāo),圓方程用表示,最后可求得為直徑的圓經(jīng)過兩定點.

試題解析:() 設(shè)橢圓的方程為,

因為橢圓的左焦點為,所以

因為點在橢圓上,所以

①②解得, ,

所以橢圓的方程為

)因為橢圓的左頂點為,則點的坐標(biāo)為

因為直線與橢圓交于兩點, ,

設(shè)點(不妨設(shè)),則點

聯(lián)立方程組消去

所以,則

所以直線的方程為

因為直線, 分別與軸交于點, ,

,即點

同理可得點

所以

設(shè)的中點為,則點的坐標(biāo)為

則以為直徑的圓的方程為 ,

,得,即

故以為直徑的圓經(jīng)過兩定點,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,一直線過點

①若直線在兩坐標(biāo)軸上截距之和為12,求直線的方程;

②若直線 軸正半軸交于 兩點,當(dāng)面積為 時求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐中,底面是邊長為2的正方形, ,且, 中點.

(Ⅰ)求證: 平面;  

求二面角的平面角的余弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點, 軸正半軸為極軸建立極坐標(biāo)系,

已知某圓的極坐標(biāo)方程為:

(1)將極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)若點 在該圓上,求的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,已知點,曲線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系,點的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過點;過點與直線平行的直線為, 與曲線相交于兩點.

(1)求曲線上的點到直線距離的最小值;

(2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(m,cos2x), =(sin2x,n),設(shè)函數(shù)f(x)= ,且y=f(x)的圖象過點( , )和點( ,﹣2). (Ⅰ)求m,n的值;
(Ⅱ)將y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)y=g(x)的圖象.若y=g(x)的圖象上各最高點到點(0,3)的距離的最小值為1,求y=g(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在中, 的中點為,且,點的延長線上,且.固定邊,在平面內(nèi)移動頂點,使得圓與邊,邊的延長線相切,并始終與的延長線相切于點,記頂點的軌跡為曲線.以所在直線為軸, 為坐標(biāo)原點如圖所示建立平面直角坐標(biāo)系.

(Ⅰ)求曲線的方程;

(Ⅱ)設(shè)動直線交曲線兩點,且以為直徑的圓經(jīng)過點,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),且當(dāng)時, ,則對任意,函數(shù)的零點個數(shù)至多有( )

A. 3個 B. 4個 C. 6個 D. 9個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A,B,C,D為平面內(nèi)的四點,且A(1,3),B(2,﹣2),C(4,1).
(1)若 = ,求D點的坐標(biāo);
(2)設(shè)向量 = , = ,若k +3 平行,求實數(shù)k的值.

查看答案和解析>>

同步練習(xí)冊答案