分析 由題意,x>1,f(x)=(x-2)2+m-4,利用函數(shù)f(x)=$\left\{\begin{array}{l}{2x(0≤x≤1)}\\{{x}^{2}-4x+m(x>1)}\end{array}\right.$的值域?yàn)閇0,+∞),得出m-4≥0,即可求出m的取值范圍.
解答 解:由題意,x>1,f(x)=(x-2)2+m-4,
∵函數(shù)f(x)=$\left\{\begin{array}{l}{2x(0≤x≤1)}\\{{x}^{2}-4x+m(x>1)}\end{array}\right.$的值域?yàn)閇0,+∞),
∴m-4≥0,
∴m≥4.
故答案為m≥4.
點(diǎn)評(píng) 本題考查函數(shù)的值域,考查配方法的運(yùn)用,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-2,\left.{-\frac{1}{3}}]$ | B. | $(-2,\left.{\frac{1}{2}}]$ | C. | $(-\frac{1}{3},\left.{\frac{1}{2}}]$ | D. | $(-1,\left.{\frac{1}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4+$\frac{3}{2}$π | B. | 6+$\frac{3}{2}$π | C. | 6+3π | D. | 12+$\frac{3}{2}$π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -24 | B. | -12 | C. | $\frac{1}{12}$ | D. | $\frac{1}{24}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com