18.歷年氣象統(tǒng)計表明:某地區(qū)一天下雨的概率是$\frac{1}{3}$,連續(xù)兩天下雨的概率是$\frac{1}{5}$.已知該地區(qū)某天下雨,則隨后一天也下雨的概率是$\frac{3}{5}$.

分析 設(shè)該地區(qū)某天下雨,隨后一天也下雨的概率是p,則由題意利用相互獨立事件概率乘法公式能求出結(jié)果.

解答 解:某地區(qū)一天下雨的概率是$\frac{1}{3}$,連續(xù)兩天下雨的概率是$\frac{1}{5}$.
設(shè)該地區(qū)某天下雨,隨后一天也下雨的概率是p,
則由題意得:$\frac{1}{3}p=\frac{1}{5}$,
解得p=$\frac{3}{5}$.
故答案為:$\frac{3}{5}$.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意相互獨立事件概率乘法公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線x-y=0與圓x2+y2=1的位置關(guān)系是(  )
A.相切B.相離
C.相交且直線過圓心D.相交且直線不過圓心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知變量x與y負(fù)相關(guān),且由觀測數(shù)據(jù)計算得樣本平均數(shù)$\overline x=4,\overline y=6.5$,則由該觀測數(shù)據(jù)算得的線性回歸方程可能是( 。
A.y=2x-1.5B.y=0.8x+3.3C.y=-2x+14.5D.y=-0.6x+9.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知雙曲線C以F1(-2,0)、F2(2,0)為焦點,且過點P(7,12).
(1)求雙曲線C與其漸近線的方程;
(2)若斜率為1的直線l與雙曲線C相交于A,B兩點,且$\overrightarrow{OA}⊥\overrightarrow{OB}$(O為坐標(biāo)原點).求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.代數(shù)式$(\sqrt{x}+2){(\frac{1}{{\sqrt{x}}}-1)^5}$的展開式中,常數(shù)項是( 。
A.-7B.-3C.3D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某校高二年級在一次數(shù)學(xué)測驗后,隨機抽取了部分學(xué)生的數(shù)學(xué)成績組成一個樣本,得到如下頻率分布直方圖:
(1)求這部分學(xué)生成績的樣本平均數(shù)$\overline x$和樣本方差s2(同一組數(shù)據(jù)用該組的中點值作為代表)
(2)由頻率分布直方圖可以認(rèn)為,該校高二學(xué)生在這次測驗中的數(shù)學(xué)成績X服從正態(tài)分布$N(\overline x,{s^2})$.
①利用正態(tài)分布,求P(X≥129);
②若該校高二共有1000名學(xué)生,試?yán)芒俚慕Y(jié)果估計這次測驗中,數(shù)學(xué)成績在129分以上(含129分)的學(xué)生人數(shù).(結(jié)果用整數(shù)表示)
附:①$\sqrt{210}$≈14.5②若X~N(μ,σ2),則P(μ-2σ<X<μ+2σ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.甲、乙、丙三人中只有一人去游覽過黃鶴樓,當(dāng)他們被問到誰去過時,甲說:“丙沒有去”;乙說:“我去過”;丙說:“甲說的是真話”.事實證明:三人中,只有一人說的是假話,那么游覽過黃鶴樓的人是( 。
A.B.C.D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)a=0.991.01,b=1.010.99,c=log1.010.99,則( 。
A.c<b<aB.c<a<bC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下面四個說法:
①長方體和正方體不是棱柱;
②五棱柱中五條側(cè)棱相等;
③三棱柱中底面三條邊都相等;
④由若干個平面多邊形圍成的幾何體叫做多面體.
其中正確說法的個數(shù)為( 。
A.0B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案