11.若互不相等的實(shí)數(shù)a、b、c成等差數(shù)列,且c,a,b成等比數(shù)列,a+3b+c=10,求a的值.

分析 設(shè)a=b-d,c=b+d,由題設(shè)根據(jù)等差數(shù)列、等比數(shù)列的性質(zhì),列出方程組,能求出結(jié)果.

解答 解:∵由互不相等的實(shí)數(shù)a,b,c成等差數(shù)列,
∴可設(shè)a=b-d,c=b+d,
由題設(shè)得:$\left\{\begin{array}{l}{b-d+3b+b+d=10}\\{(b-d)^{2}=b(b+d)}\end{array}\right.$,
解方程組得$\left\{\begin{array}{l}{b=2}\\{d=6}\end{array}\right.$,或$\left\{\begin{array}{l}{b=2}\\{d=0}\end{array}\right.$,
∵d≠0,
∴b=2,d=6,
∴a=b-d=-4,
故a的值為-4.

點(diǎn)評(píng) 本題考查等差數(shù)列、等比數(shù)列等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知集合A={0,1,2,3,4},B={m|m=2n,n∈A},M={x∈R|x>2},則集合B∩∁RM={0,2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.設(shè)全集U=R,集合A={x|x2-x-2>0},B={x|x2-3x-10<0},求∁UA,∁UB,A∩B,∁UA∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.?dāng)?shù)列{an}滿足${a_1}+2a_2^{\;}+{2^2}{a_3}+…+{2^{n-1}}{a_n}={n^2}$,則an=$\frac{2n-1}{{2}^{n-1}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,利用隨機(jī)模擬的方法可以估計(jì)圖中由曲線$y=\frac{x^2}{2}$與兩直線x=2及y=0所圍成的陰影部分的面積S:
①先產(chǎn)生兩組0~1的增均勻隨機(jī)數(shù),a=rand ( 。,b=rand (  );
②產(chǎn)生N個(gè)點(diǎn)(x,y),并統(tǒng)計(jì)滿足條件$y<\frac{x^2}{2}$的點(diǎn)(x,y)的個(gè)數(shù)N1,已知某同學(xué)用計(jì)算器做模擬試驗(yàn)結(jié)果,當(dāng)N=1000時(shí),N1=332,則據(jù)此可估計(jì)S的值為1.328.(保留小數(shù)點(diǎn)后三位)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知點(diǎn)A(m,0)(m∈R)和雙曲線x2-y2=1右支上的兩個(gè)動(dòng)點(diǎn)B,C,在動(dòng)點(diǎn)B,C運(yùn)動(dòng)的過程中,若存在三個(gè)等邊三角形ABC,則點(diǎn)A橫坐標(biāo)的取值范圍是($\sqrt{6}$,+∞)∪(-∞,-$\sqrt{6}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知全集U=Z,A={x|x2-x-2<0,x∈Z},B={-1,0,1,2},則(∁UA)∩B等于( 。
A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.△ABC中,角A、B、C所對(duì)邊分別為a、b、c,cosA=$\frac{5}{13}$,tan$\frac{B}{2}+cot\frac{B}{2}=\frac{10}{3}$,c=21;
(1)求sinC的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.甲、乙兩位學(xué)生參加數(shù)學(xué)競(jìng)賽培訓(xùn),在培訓(xùn)期間他們參加的5次預(yù)賽成績(jī)記錄如下:
甲:82,82,79,95,87
乙:95,75,80,90,85
(1)用莖葉圖表示這兩組數(shù)據(jù);
(2)求甲、乙兩人的成績(jī)的平均數(shù)與方差;
(3)若現(xiàn)要從中選派一人參加數(shù)學(xué)競(jìng)賽,你認(rèn)為選派哪位學(xué)生參加合適說明理由?

查看答案和解析>>

同步練習(xí)冊(cè)答案