設(shè)是數(shù)列的前項和,且.
(1)當(dāng),時,求;  
(2)若數(shù)列為等差數(shù)列,且,.
①求;
②設(shè),且數(shù)列的前項和為,求的值.
(1);(2)①;②

試題分析:(1)令n=1,先求出,再利用導(dǎo)出的遞推公式,由遞推公式知數(shù)列{}是等比數(shù)列,利用等比數(shù)列通項公式通項公式寫出;(2)由等差數(shù)列通項公式和前n項和公式代入已知條件,通過比較系數(shù)求得,從而寫出;將代入求出數(shù)列的通項公式,通過提前公因式、分母有理化將拆成兩項的差,利用拆項消去法求出.
試題解析:(1)由題意得,,
兩式相減,得,                          3分
又當(dāng)時,有,即,
數(shù)列為等比數(shù)列,.                  5分
(2)①數(shù)列為等差數(shù)列,由通項公式與求和公式,

, ,,.   10分

   
                            13分
,
                    16分
考點:數(shù)列第n項與前n項和的關(guān)系;等比數(shù)列定義與通項公式;等差數(shù)列通項公式與前n項和公式;拆項消去法;轉(zhuǎn)化與化歸思想
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列的前項和,
(1)寫出數(shù)列的前5項;
(2)數(shù)列是等差數(shù)列嗎?說明理由.
(3)寫出的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等差數(shù)列中,求數(shù)列的通項公式及

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知等比數(shù)列滿足的等差中項
(1)求數(shù)列的通項公式;(2)若求使成立的正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知銳角三角形ABC中,角A,B,C的對邊分別是a,b,c,tanB=
3
ac
a2+c2-b2
,則角B的大小為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若數(shù)列{an}是等比數(shù)列,且an>0,則數(shù)列也是等比數(shù)列. 若數(shù)列是等差數(shù)列,可類比得到關(guān)于等差數(shù)列的一個性質(zhì)為(     ).
A.是等差數(shù)列
B.是等差數(shù)列
C.是等差數(shù)列
D.是等差數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列{an}滿足an=n·pn(n∈N+,0< p<l),下面說法正確的是(   )
①當(dāng)p=時,數(shù)列{an}為遞減數(shù)列;②當(dāng)<p<l時,數(shù)列{an}不一定有最大項;
③當(dāng)0<p<時,數(shù)列{an}為遞減數(shù)列;
④當(dāng)為正整數(shù)時,數(shù)列{an}必有兩項相等的最大項
A.①②B.③④C.②④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

等差數(shù)列的值為(   )
A.66B.99C.144D.297

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列前項和為,且點圖像上,求

查看答案和解析>>

同步練習(xí)冊答案