5.函數(shù)$f(x)=Asin({ωx+ϕ})({A>0,ω>0,|φ|<\frac{π}{2}})$的部分圖象如圖所示,
求(Ⅰ)函數(shù)f(x)的解析式;
(Ⅱ)函數(shù)y=Acos(ωx+ϕ)的單調(diào)遞增區(qū)間.

分析 (Ⅰ)由已知圖象確定最值、周期以及初相,得到函數(shù)f(x)的解析式;
(Ⅱ)利用Ⅰ的結(jié)論,結(jié)合余弦函數(shù)的性質(zhì)求單調(diào)增區(qū)間.

解答 解:(Ⅰ)由五點(diǎn)作圖法知,A=1,$\left\{\begin{array}{l}\frac{π}{12}×ω+ϕ=\frac{π}{2}\\ \frac{π}{3}×ω+ϕ=π\(zhòng)end{array}\right.$,解得ω=2,φ=$\frac{π}{3}$,
所以函數(shù)解析式為$y=2sin({2x+\frac{π}{3}})$;
(Ⅱ)令$2kπ-π≤2x+\frac{π}{3}≤2kπ,k∈Z$,解得,$kπ-\frac{2}{3}π≤x≤kπ-\frac{π}{6}$
所以y=Acos(ωx+ϕ)的單調(diào)增區(qū)間為$[{kπ-\frac{2}{3}π,kπ-\frac{π}{6}}],k∈Z$.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象以及性質(zhì);熟練掌握正弦函數(shù)圖象和性質(zhì)是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)$y=\sqrt{16-{4}^{x}}$的值域是( 。
A.(0,4)B.(-∞,4)C.(4,+∞)D.[0,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.閱讀下列程序:如果輸入x=-2,則輸出的結(jié)果y為( 。
A.0B.-1C.-2D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)$y=\frac{x^2}{2^x}$的單調(diào)增區(qū)間是( 。
A.$(0,\frac{2}{ln2})$B.$(-∞,0),(\frac{2}{ln2},+∞)$C.$(-∞,\frac{2}{ln2})$D.$(\frac{2}{ln2},+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.等差數(shù)列{an}的前n項(xiàng)和為${S_n}=\frac{{{n^2}+3n}}{2}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足${b_n}=\frac{1}{{{a_{2n-1}}{a_{2n+1}}}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=tcosα\\ y=1+tsinα\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρcos2θ=4sinθ.
(1)設(shè)M(x,y)為曲線C上的任意一點(diǎn),求x+y的取值范圍;
(2)若直線l與曲線C交于A,B兩點(diǎn),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)化簡:$\frac{{cos(θ+π)×{{sin}^2}(θ+3π)}}{{tan(θ+4π)×tan(π+θ)×{{cos}^3}(-π-θ)}}$
(2)求值:$\frac{{\sqrt{1-2sin{{10}°}cos{{10}°}}}}{{cos{{10}°}-\sqrt{1-{{cos}^2}{{170}°}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.給出下列命題:①向量$\overrightarrow{AB}$與$\overrightarrow{BA}$是相等向量;②共線的單位向量是相等向量;③模為零的向量與任一向量共線;④兩平行向量所在直線互相平行.其中不正確的是( 。
A.①②③B.②③④C.①②④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)y=loga(2x-3)+$\frac{\sqrt{2}}{2}$的圖象恒過定點(diǎn)P,P在冪函數(shù)f(x)的圖象上,則f(9)=( 。
A.$\frac{1}{3}$B.$\sqrt{3}$C.3D.9

查看答案和解析>>

同步練習(xí)冊(cè)答案