A. | $\frac{1}{2}$ | B. | 1 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
分析 把分子中的cos10°化為cos(30°-20°),利用兩角差的余弦公式進(jìn)行計(jì)算即可.
解答 解:$\frac{{2cos{{10}°}-sin{{20}°}}}{{cos{{20}°}}}$=$\frac{2cos(30°-20°)-sin20°}{cos20°}$
=$\frac{2(\frac{\sqrt{3}}{2}cos20°+\frac{1}{2}sin20°)-sin20°}{cos20°}$
=$\frac{\sqrt{3}cos20°}{cos20°}$
=$\sqrt{3}$.
故選:D.
點(diǎn)評 本題主要考查了兩角差的余弦公式的應(yīng)用問題,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\frac{3}{2},-\frac{3}{2e}})$ | B. | $[{-\frac{3}{2e},-\frac{5}{{3{e^2}}}})$ | C. | $[{-\frac{3}{2},-\frac{5}{{3{e^2}}}})$ | D. | $[{-2e,-\frac{3}{2e}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-1,1),(0,0) | B. | {(-1,1),(0,0)} | C. | {x=-1或0,y=1或0} | D. | {-1,0,1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{1}{4}$] | B. | [$\frac{1}{4}$,1) | C. | (0,$\frac{1}{2}$] | D. | [$\frac{1}{4}$,$\frac{1}{2}$]∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{12}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $t=-\frac{{\sqrt{3}}}{2}$,m的最小值為$\frac{π}{6}$ | B. | $t=-\frac{{\sqrt{3}}}{2}$,m的最小值為$\frac{π}{12}$ | ||
C. | $t=-\frac{1}{2}$,m的最小值為$\frac{π}{6}$ | D. | $t=-\frac{1}{2}$,m的最小值為$\frac{π}{12}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com