5.411除以5的余數(shù)是( 。
A.1B.2C.3D.4

分析 分別求得41,42,43,44除以5的余數(shù),以此類推,即可求得411除以5的余數(shù).

解答 解:41除以5的余數(shù)為4,
42除以5的余數(shù)為1,
43除以5的余數(shù)為4,
44除以5的余數(shù)為4,

411除以5的余數(shù)為4,
故答案為:D.

點(diǎn)評(píng) 本題考查學(xué)生對(duì)余數(shù)除法的有關(guān)知識(shí)的掌握和運(yùn)用情況,考查學(xué)生對(duì)數(shù)據(jù)的處理,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上的拋物線過(guò)點(diǎn)(1,2).
(Ⅰ)求拋物線的標(biāo)準(zhǔn)方程;
(Ⅱ)直線y=x-4與拋物線相交于A,B兩點(diǎn),求三角形AOB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如果直線m∥平面α,直線n?平面α,則下列說(shuō)法正確的為( 。
A.有且只有一個(gè)平面β,使得m⊥β,且n?β
B.有無(wú)數(shù)個(gè)平面β,使得m⊥β,且n?β
C.不存在平面β,使得m⊥β,且n?β
D.至多有一個(gè)平面β,使得m⊥β,且n?β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知直線y=-x+m是曲線y=x2-3lnx的一條切線,若函數(shù)f(x)=$\frac{{m}^{x}-1}{1+{m}^{x}}$,滿足f[a(x+1)]+f[(x+2)(x+4)]>0,對(duì)于任意的x∈(0,+∞)恒成立,則實(shí)數(shù)a的取值范圍為( 。
A.(2$\sqrt{3}$+4,+∞)B.[-2$\sqrt{3}$,+∞)C.(4,+∞)D.(-2$\sqrt{3}$-4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=xlnx+x,h(x)=bx+1
(1)求函數(shù)f(x)的極值;
(2)設(shè)g(x)=h(x)-$\frac{f(x)}{x}$,是否存在常數(shù)b,當(dāng)x∈(0,e]時(shí),函數(shù)g(x)的最小值為3?若存在,求出b的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{1}{2}$x2+(1-x)ex(e為自然對(duì)數(shù)的底數(shù)),g(x)=x-(1+a)lnx-$\frac{a}{x}$,a<1.
(1)求曲線f(x)在x=1處的切線方程;
(2)討論函數(shù)g(x)的極小值;
(3)若對(duì)任意的x1∈[-1,0],總存在x2∈[e,3],使得f(x1)>g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)f(x)=$\sqrt{2-si{n}^{2}2x+cos4x}$的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.若z=(1+i)i(i為虛數(shù)單位),則$\overline{z}$的虛部是( 。
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知f(2x)=2x,那么f(8)等于( 。
A.$\frac{4}{3}$B.8C.18D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案