【題目】已知橢圓 經(jīng)過(guò)點(diǎn),一個(gè)焦點(diǎn)是.
(1)求橢圓的方程;
(2)若傾斜角為的直線與橢圓交于兩點(diǎn),且,求直線的方程.
【答案】(1) (2)
【解析】試題分析:(1)利用題目所提供的條件布列關(guān)于a,b的方程組,解方程組得橢圓方程.
(2)根據(jù)直線的傾斜角為,設(shè)直線的方程為y=x+b聯(lián)立橢圓方程,利用韋達(dá)定理以及弦長(zhǎng)公式解得b值,從而得直線的方程..
試題解析:
(1)橢圓C: (a>b>0)經(jīng)過(guò)點(diǎn),
則:①
橢圓的一個(gè)焦點(diǎn)是F(0,1).
則a2﹣b2=1 ②
由①②得:a2=4 b2=3
橢圓C的方程: ③
(2)根據(jù)題意可知:設(shè)直線l的方程為:y=x+b④
聯(lián)立③④得:
3(x+b)2+4x2=12
整理得:7x2+6bx+3b2﹣12=0
∴
∵|AB|===
解方程得:b=±2
直線l的方程為:y=x±2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,是邊長(zhǎng)為的棱形,且分別是的中點(diǎn).
(1)證明:平面;
(2)若二面角的大小為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某小學(xué)為了解本校某年級(jí)女生的身高情況,從本校該年級(jí)的學(xué)生中隨機(jī)選出100名女生并統(tǒng)計(jì)她們的身高(單位: ),得到如圖頻率分布表:
分組(身高) | ||||
(Ⅰ)用分層抽樣的方法從身高在和的女生中共抽取6人,則身高在的女生應(yīng)抽取幾人?
(Ⅱ)在(Ⅰ)中抽取的6人中,再隨機(jī)抽取2人,求這2人身高都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知在銳角△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且tanC= . (Ⅰ)求角C大;
(Ⅱ)當(dāng)c=1時(shí),求ab的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,若將f(x)的圖象上所有點(diǎn)向右平移 個(gè)單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)增區(qū)間為( )
A. ,k∈Z
B. ,k∈Z
C. ,k∈Z
D. ,k∈Z
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知點(diǎn),曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn)的極坐標(biāo)為,直線的極坐標(biāo)方程為,且過(guò)點(diǎn);過(guò)點(diǎn)與直線平行的直線為, 與曲線相交于兩點(diǎn).
(1)求曲線上的點(diǎn)到直線距離的最小值;
(2)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示的空間幾何體中,四邊形是邊長(zhǎng)為2的正方形, 平面, , , , .
(1)求證:平面平面;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,隔河看兩目標(biāo)A、B,但不能到達(dá),在岸邊選取相距 km的C、D兩點(diǎn),并測(cè)得∠ACB=75°,∠BCD=45°,∠ADC=30°,∠ADB=45°(A、B、C、D在同一平面內(nèi)),求兩目標(biāo)A、B之間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面向量 =(1,x), =(2x+3,﹣x)(x∈R).
(1)若 ∥ ,求| |
(2)若 與 夾角為銳角,求x的取值范圍.
(3)若| |=2,求與 垂直的單位向量 的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com